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ABSTRACT 

An analysis is carried out which considers the relationship of 

orbit mechanics to the satellite navigation problem, in particular, 

meteorological satellites. A preliminary discussion is provided which 

characterizes the distinction between "classical navigation" and 

"satellite navigation" which is a process of determining the space 

time coordinates of data fields provided by sensing instruments on 

meteorological satellites. Since it is the latter process under con-

sideration, the investigation is orientated toward practical appli-

cations of orbit mechanics to aid the development of analytic solu-

tions of satellite orbits. 

Using the invariant two body Keplerian orbit as the basis of 

discussion, an analytic approach used to model the orbital char-

acteristics of near earth satellites is given. First the basic con-

cepts involved with satellite navigation and orbit mechanics are 

defined. In addition, the various measures of time and coordinate 

geometry are reviewed. The two body problem is then examined be-

ginning with the fundamental governing equations, i.e. the inverse 

square force field law. After a discussion of the mathematical and 

physical nature of this equation, the Classical Orbital Elements used 

to define an elliptic orbit are described. The mathematical analysis 

of a procedure used to calculate celestial position vectors of a 

satellite is then outlined. It is shown that a transformation of 

Kepler's time equation (for an elliptic orbit) to an expansion in 

powers of eccentricity removes the need for numerical approximation. 
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The Keplerian solution is then extended to a perturbed solution, 

which considers first order, time derivatives of the elements defining 

the orbital plane. Using a formulation called the gravitational per-

turbation function, the form of a time variant perturbed two body orbit 

is examined. Various characteristics of a perturbed orbit are analyzed 

including definitions of the three conventional orbital periods, the 

nature of a sun-synchronous satellite, and the velocity of a non-

circular orbit. 

Finally, a discussion of the orbital revisit problem is provided 

to highlight the need to develop efficient, relatively exact, analytic 

solutions of meteorological satellite orbits. As an example, the 

architectural design of a satellite system to measure the global radia-

tion budget without deficiencies in the space time sampling procedure 

is shown to be a simulation problem based on "computer flown" satel-

lites. A set of computer models are provided in the appendices. 
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1.0 INTRODUCTION 

The topic of this investigation is orbital mechanics and its 

relationship to the satellite navigation problem. Since the term 

"satellite navigation" denotes a variety of concepts, it is important 

to refine a definition for purposes of this study. We say, in general, 

that satellite navigation is a process of identifying the space and 

time coordinates of satellite data products (in this case meteorologi-

cal satellites). Note that this characterization departs somewhat from 

the classical usage of navigation which implies the definition and 

maneuvering of the position of ships, aircraft, satellites, etc. A 

more exact definition is given in Chapter 2. A fundamental component 

of any satellite navigation system is a model of the satellite's orbit-

al properties. This investigation is primarily concerned with the 

mathematical and physical nature of near earth meteorological satellite 

orbits and thus meteorological satellite navigation requirements. The 

study also considers the basic nature of coordinate systems and the 

various measures of time. 

There are two very general orbital application areas insofar as 

meteorological satellites are concerned. The first and more traditional 

application of orbital analysis is the process of tracking the position 

and motion of satellites, by the space agencies, so as to provide ephem-

eris and antenna pointing information to ground readout stations and 

operations command facilities. Considering that in this process, the 

actual characteristics of an orbital plane are defined, this can be 

referred to as a navigation process. However, for our purposes, we 

shall consider this process as an "orbital tracking" problem. 
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The second application is the analytic treatment of orbital motion 

in a model designed for processing the meteorological data, generated 

by spacecraft instrumentation. In this case, there are very different 

computational and operational restraints than in the case of orbit 

tracking. Primarily we are concerned with developing efficient and 

quick computational routines that retain a relatively high degree of 

orbital position accuracy, but are not bogged down with the multiplicity 

of external forces that orbit tracking models must consider. 

The practical outcome of the study is a set of orbital computer 

models, which are adaptable in a very general fashion, to a variety of 

analytic near-earth satellite navigation systems. The usability of 

these models is insured because they are based on the conventional or-

bital elements available from the primary meteorological satellite 

agencies, i.e. the National Environmental Satellite Service (NESS), the 

National Aeronautical Space Administration (NASA), the European Space 

Agency (ESA), and the National Space Development Agency (NASDA) of 

Japan. The reader may refer to Appendix A for an explanation. 

Meteorological satellites, whether they are of the experimental or 

operational type, are classified as either geosynchronous (== 24 hour 

period) or polar low orbiter (= 100 minute period) by the above agencies. 

The low orbiters may be placed in either sun-synchronous or non-sun-

synchronous orbit. All of these satellites are in nearly circular orbit, 

and in general, are at altitudes at which atmospheric drag is not a 

significant factor over the prediction time scale under consideration 

(= 1-2 weeks). This investigation will be addressed to these types of 

orbits. 
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Chapter 2.0 considers some basic concepts which are crucial to an 

understanding of the satellite navigation problem. Chapter 3.0 provides 

a set of definitions and an explanation of the various measures of time. 

A discussion of station coordinates (latitude) is given in Chapter 4.0 

along with some fundamental geometric definitions. Chapter 5.0 repre-

sents the major portion of the analysis, that is, a discussion of the 

two body orbit problem and a method to calculate orbital position vec-

tors given a set of "Classical Orbital Elements". Chapter 6.0 considers 

the time varying properties of an orbit and goes on to look at the 

resultant effects of the aspherical gravitational potential of the earth 

on the orbital characteristics of a satellite. The topic of the orbital 

revisit problem is considered in Chapter 7.0. Finally, appendices are 

included which provide a set of computer models which can be used to 

calculate orbital position vectors and the various orbital periods 

which are discussed in the chapter on perturbation theory. 

A principle reference used in this analysis is the very fine com-

pendium on Orbit Mechanics by Pedro Ramon Escobal (1965), hereafter EB. 

This work stands alone as an aid to solving orbital mechanics problems 

faced by satellite workers and scientists. Other very helpful ref-

erences used in this study were The Handbook on Practical Navigation by 

Bowditch (1962) and a translation of a Russian text on orbit determina-

tion by Dubyago (1961). The latter work provides a very interesting 

historical sketch of the development of orbital mechanics and man's 

understanding of the motion of celestial bodies. 



2.0 BASIC CONCEPTS 

2.1 Orbit Mechanics and Satellite Navigation 

The following definitions are essential to an understanding of the 

ensuing analysis: 

Orbital Mechanics: A branch of celestial mechanics concerned with 

orbital motions of celestial bodies or artificial spacecraft. 

Celestial Mechanics: The calculation of motions of celestial bodies 

under the action of their mutual gravitational attractions. 

Astrodynamics: The practical application of celestial mechanics, 

astroballistics, propulsion theory, and allied fields to the problem of 

planning and directing the trajectories of space vehicles. 

Navigation (General): The process of directing the movement of a 

craft so that it will reach its intended destination: subprocesses are 

position fixing, dead reckoning, pilotage, and homing. 

Navigation (Satellite): The process of determining a set of unique 

transformations between the coordinates of satellite data points in a 

satellite frame of reference and their associated terrestrial or plane-

tary coordinates. (This definition should be contrasted with "Satellite 

Image Alignment", which is a non-analytic, mostly subjective process in 

which the two or more images to be aligned often have different aspect 

ratio characteristics.) 

The major areas of Orbital Mechanics are: 

1. Satellite Orbit Injection 

a. Thrust (Ballistic, Propulsion) forces 

b- Drag forces 

c. Lift forces 

4 
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2. Determination of Orbital Elements 

a. Position vector, velocity vector, and initial time 

(r, r, tQ) 

b. Two position vectors and times (r^, t^, t2) 

c. Three pairs of azimuth-elevation angles and times 

[(φ1} H1, t1), (φ2, H2, t2), (φ3, H3, t3)] 

d. Slant-range, range-rate, and time observations 

[(d1, d1, t 1 , (d2, d2, t2)...] 

e. Mixed observations (angles, ranges, range-rates, times) 

3. Orbital Properties and Tracks 

a. Orbital elements 

b. Velocities and periods 

c. Position vectors 

d. Direct and retrograde orbits 

e. Equator crossing data 

f. Orbital revisit frequencies 

4. Orbital Analytics (Keplermanship) 

a. Nodal passages 

b. Satellite rise and set times 

c. Line of sight periods and eclipses 

d. Orbital architecture 

The ensuing analysis will be primarily concerned with the topics 

outlined in parts 3 and 4. Since meteorological satellite navigation 

methods are generally not affected by how satellites are placed in 

orbit nor how the various space agencies track these satellites so as 

to produce orbital elements (other than the associated errors), we will 

put aside any further discussion of parts 1 and 2, and instead concen-

trate on the material outlined in parts 3 and 4. 
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2.2 Satellite Navigation Modeling 

Satellite navigation modeling can be considered to be a five 

part problem: 

1. The time dependent determination of the spacecraft orbital 

position in an inertial coordinate system. 

2. The time dependent determination of the spacecraft orien-

tation (attitude) in an inertial coordinate system., 

3. The specification or determination (time dependent) of the 

optical paths of the imaging or sounding instrument with respect to 

the spacecraft. 

4. The integration of the above static and dynamic aspects of the 

spacecraft into a model which can provide measurement pointing vectors 

in the inertial frame of reference. 

5. The transformation of the inertial pointing vectors to pointing 

vectors in the preferred (non-inertial) coordinate system. 

The first requirement of an analytic navigation technique is a 

model which can solve for satellite position at any specified time. In 

fact, the determination of spacecraft orientation is absolutely depen-

dent on knowledge of satellite position if ground based or star based 

attitude determination techniques are applied. A discussion of this 

topic can be found in Smith and Phillips (1972) and is presently being 

extended by Phillips (1979). With the knowledge of spacecraft position 

and orientation, the dynamics of the actual on-board instrumentation can 

then be considered. Finally, upon integration of these three dynamic as-

pects of an orbiting satellite into an appropriate model, pointing vec-

tors can be obtained which fix the relationship between an instrument 

field-of-view and a terrestrial coordinate (latitude, longitude, height). 
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2.3 Satellite Orientation 

It is important to distinguish between the effect of varying 

satellite position and varying satellite orientation on the apparent 

earth scene. First of all it is instructive to define the various terms 

associated with satellite orientation: 

Attitude: Orientation of the principal axis of a spacecraft, e.g. 

the spin axis, with respect to the principal axis (spin axis) of the 

earth, usually given in terms of declination and right ascension with 

respect to a celestial frame of reference,. 

Precession: The angular velocity of the axis of spin of a spin-

ning rigid body, which arises as a result of steady uneven external 

torques acting on the body. 

Nutation: A high frequency spiral, bobbing, or jittering motion 

of a spinning rigid body, about a mean principal axis, due to asymmetric 

weight distribution or short period torque modulation. 

Wobble: An irregular vacillation of a body about its mean prin-

cipal axis due to non-solid body characteristics. 

Figure 2.1 has been provided to illustrate these definitions. 

PRECESSION 

PRINCIPAL AXIS 
OF EARTH 

PRINCIPAL AXIS 
OF SPACECRAFT 

NUTATION 

WOBBLE 

Figure 2.1 Dynamics of Satellite Orientation 
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Variation in the orientation of a meteorological satellite can 

lead to both translations and rotations of earth fields with respect 

to a fixed satellite field-of-view. These apparent motions are super-

imposed on real motions due to variation in the orbital position. A 

requirement of any satellite navigation model is the inclusion of pro-

cedures to separate the apparent motions from the real motions which 

are essentially independent processes. Therefore, this investigation 

will be devoted to the determination of orbital position as these cal-

culations generally preface the determination of the remaining navi-

gational parameters. 

2.4 Applications of a Satellite Navigation Model 

Finally, an important question concerning satellite navigation is: 

"What does a navigation model provide?" Essentially, it provides the 

following three capabilities: 

1. The capability of placing grid and/or geographic-topographic 

annotation information in or on the data. This process should be called 

a "Gridding" process. 

2. A means to specify the terrestrial or planetary coordinate of 

a given data point coordinate, or conversely, to specify the data point 

coordinate corresponding to a given terrestrial or planetary coordinate. 

This process should be called a "Navigational Interrogation" process. 

3. A framework for transforming the raw satellite imagery into 

alternate cartographic (map) projections. The actual process of re-

organizing the raw data into a new projection should be called a "Map-

ping" process. 
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Note the actual navigation process only involves specifying, 

calculating, or determining the appropriate parameters inherent to the 

navigation model and utilizing them to calculate coordinate transfor-

mations. 



3.0 TIME 

3.1 Basic Systems of Time 

Any navigational process, by its very nature, involves various 

systems of time. Therefore, we need the following definitions: 

Mean Solar Time (MST): Time that has the mean solar second as its 

unit and is based on the mean sun's motion. One mean solar second is 

1/86,400 of a mean solar day. One solar day is 24 hours of mean solar 

time. 

Greenwich Mean Time (GMT): Mean solar time at the meridian of 

Greenwich, England. Also referred to as Universal Time (UTO), Zulu 

Time, Z-Time, or Greenwich Civil Time: 

GMT = MST + n (3»1) 

where n is the number of time zones to the west of the Greenwich meri-

dian as shown in Figure 3.1. There are also higher order systems of 

Universal Time (UT1, UT2) which are corrected for variations in the 

earth's rotational rate due to secular, irregular, periodic seasonal and 

periodic tidal terms and polar motion due to solar and lunar gravita-

tional effects on the earth's equatorial bulge. These corrections are 

not significant for the time periods we are considering. 

Figure 3.1 Time Zones 
10 
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Ephemeris Time (ET): A uniform measure of time defined by laws 

of dynamics and determined in principle from the orbital motions of the 

planets, particularly of the earth. One ephemeris second (ISU:1960) is 

1/31556925.9747 of a tropical year defined by the mean motion of the sun 

in longitude at the epoch 1900, January 0, 12 hours (12:00 GMT, Dec. 31, 

1899). An ephemeris day is 86,400 ephemeris seconds. The earth's rota-

tion suffers periodic and secular variations in rotation so that ephem-

eris time is defined by: 

ET = GMT + At (3.2) 

where At is an annual increment tabulated in the American Ephemeris and 

Nautical Almanac. For instance, using values from the American 

Ephemeris and Nautical Almanac (1978), Table 3.1 is generated: 

Note that At can not be calculated in advance. It is determined from 

observed and predicted positions of the moon. 

It is also worth noting that the change in the time increment 

from year to year is fairly insignificant. The result of this 

Table 3.1: Ephemeris Time Correction Increments 

Year At 

1956.5 
1957.5 
1958.5 
1959.5 
1960.5 
1961.5 
1962.5 
1963.5 
1964.5 
1965.5 

31.52 
31.92 
32.45 
32.91 
33.39 
33.80 
34.23 
34.73 
35.40 
36.14 

\ 

\ 
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characteristic of ephemeris time, is that short term orbital predictions 

(- 5 years) can effectively ignore ephemeris corrections. Although this 

may simplify operational satellite orbit prediction, incremental cor-

rection must be included when considering long term orbital calculations 

such as historical earth-sun configurations. Table 3.2 represents a 

listing of incremental corrections from the American Nautical and 

Ephemeris Almanac (1978). 

Atomic Time (AT): A measure of time based on the oscillations of 

the U.S. Cesium Frequency Standard (National Bureau of Standards, 

Boulder, Colorado). The standard is based on the U.S. Naval Obser-

vatory's suggested value of 9,192,631,770 oscillations per second of 

the cesium atom - isotope 133. The reference epoch has been defined 
h m s 

as January 1, 1958 0 0 0 GMT. The standard time scale to which U.S. 

orbital tracking stations are synchronized is the Universal Time 

Coordinated (UTC) system. This system is derived from an atomic time 

scale. Prior to 1972 the UTC system operated at a frequency offset 

from the AT system,, Since January 1, 1972 the UTC system is derived 

from a rubidium atomic frequency standard. The new measurements used 

to convert to UTC come from various global stations and are thus re-

ferred to as Station Time (ST). 

Tropical Year; Period of one revolution of the earth measured 

between two vernal equinoxes. Equal to 365.24219879 mean solar days 

or 365 days, 5 hours, 48 minutes, 46 seconds or 31,556,925.9747 ephem-

eris seconds. Also referred to as an Astronomical Year, Equinoctial 

Year, Natural Year or Solar Year. 

Anomalistic Year: Period of one revolution of the earth measured 

between perhelion to perhelion (see Figure 3.2). Equal to 365.259641204 



Table 3.2: Ephemeris Time Correction Table (From the 1978 
American Ephemeris and Nautical Almanac) 

Date 
(0k UT) AT(A) AUTl Date 

(0' UT) AT(A) AUTl Date 
(0i' UT) AT(A) AUTl 

1956 s s 1964 s s 1972 s s 
Jan. 1 +31.34 -0 .08 Apr. 1 +35.22 -0 .05 Jan. 1 +42.22 -0 .04 
Jan. 4 31.34 - .08 July 1 35.40 - .11 Apr. 1 42.52 - .34 
Jan. 4 31.34 - .02 Aug. 31 35.47 - .11 .June 30 42.82 - .64 
Apr. 1 31.43 - .04 Sept. 1 35.47 - .01 July 1 42.82 + .36 
July 1 31.52 - .07 Oct. 1 35.52 - .02 Oct. 1 43.07 + .11 
Oct. 1 31.56 - .01 Dec. 31 35.73 - .11 Dec. 31 43.37 - .19 

1957 1965 1973 
Jan. 1 +31.67 -0 .04 Jan. 1 +35.73 -0.01 Jan. 1 +43.37 +0.81 
Apr. 1 31.79 - .06 Feb.28 35.86 - .06 Apr. 1 43.67 + .51 
July 1 31.92 - .07 Mar. 1 35.86 + .04 July 1 43.96 + .22 
Oct. 1 32.00 - .02 Apr. 1 35.94 .00 Oct. 1 44.19 - .01 

June 30 36.14 - .08 Dec. 31 44.48 - .30 
1958 July 1 36.14 + .02 

Jan. 1 +32.17 -0 .04 Aug. 31 36.24 - .01 1974 
Apr. 1 32.32 - .05 Sept. 1 36.24 + .09 Jan. 1 +44.48 +0.70 
July 1 32.45 - .06 Oct. 1 36.31 + .06 Apr. 1 44.73 + .45 
Oct. 1 32.52 - .01 July 1 44.99 +, .19 

1966 Oct. 1 45.20 - .02 
1959 Jan. 1 +36.54 -0.05 Dec. 31 45.47 - .29 

Jan. 1 +32.67 -0 .03 Apr. 1 36.76 - .03 
Apr. 1 32.80 - .03 July 1 36.99 - .02 1975 
July 1 32.91 - .06 Oct. 1 37.18 + .02 Jan. 1 +45.47 +0.71 
Oct. 1 33.00 .00 Apr. 1 45.73 + .45 

1967 July 1 45.98 + .20 
1960 Jan. 1 +37.43 +0.01 Oct. 1 46.18 .00 

Jan. 1 +33.15 -0 .01 Apr. 1 37.65 + .02 Dec. 31 46.45 - .27 
Apr. 1 33.28 - .03 July 1 37.87 + .04 
July 1 33.39 - .02 Oct. 1 38.04 + .10 1976 
Oct. 1 33.45 + .03 Jan. 1 +46.45 +0.73 

1968 Apr. 1 ( 46.7 ) ( + .5 ) 
1961 Jan. 1 +38.29 +0.09 July 1 ( 47.0 ) ( + -2 ) 

Jan. 1 +33.58 +0.02 Jan. 31 38.37 + .09 Oct. 1 ( 47.2 ) ( 0 ) 
Apr. 1 33.70 + .02 Feb. 1 38.37 - .01 

( 47.2 ) ( 0 ) 

July 1 33.80 + .04 Apr. 1 38.52 .00 1977 
July 31 33.81 + .06 July 1 38.75 + .01 Jan. 1 (+47.4 ) 
Aug. 1 33.81 + .01 Oct. 1 38.95 + .04 Apr. 1 ( 47.7 ) 
Oct. 1 33.86 + .04 July 1 ( 47.9 ) 

1969 Oct. 1 ( 48.1 ) 
1962 Jan. 1 +39.20 +0.03 

( 48.1 ) 

Jan. 1 +33.99 +0.04 Apr. 1 39.45 + .02 1978 
Apr. 1 34.12 + .01 July 1 39.70 + .01 Jan. 1 (+48.4 ) 
July 1 34.23 .00 Oct. 1 39.91 + .03 Apr. 1 ( 48.6 ) 
Oct. 1 34.31 + .02 July 1 ( 48.8 ) 

1970 Oct. 1 ( 49.1 ) 
1963 Jan. 1 +40.18 0.00 

( 49.1 ) 

Jan. 1 +34.47 -0 .03 Apr. 1 40.45 - .03 1979 
Apr. 1 34.58 - .05 July 1 40.70 - .05 Jan. 1 (+49.3 ) 
July 1 34.73 - .09 Oct. 1 40.89 - .01 

(+49.3 ) 

Oct. 1 34.83 - .09 
Oct. 31 34.90 - .12 1971 
Nov. 1 34.90 - .02 Jan. 1 +41.16 -0 .04 

Apr. 1 41.41 - .05 
1964 July 1 41.68 - .08 

Jan. 1 +35.03 -0 .08 Oct. 1 41.92 .09 
Mar. 31 +35.22 -0 .15 Dec. 31 +42.22 -0 .15 

The quantity AT(A) = 32?18+TAI-UT1 provides a first approximation to A T = E T - U T , 
the reduction from Universal to Ephemeris Time. TAI is the scale of International Atomic Time 
formally introduced on 1972 January 1, but extrapolated to previous dates; UT1 is the observed 
Universal Time, corrected for polar motion. The correction AUTl = UT1 —UTC is given for use 
in connection with broadcast time signals, which are now UTC in most countries. Coded values of 
AUT1 are now given in the primary time signal emissions, and may be as much as ±0S8. Dis-
continuities in UTC can occur at 0h UT on the first day of a month (exception: 1956 Jan. 4, 
discontinuity at 19h UT). Special entries are given for the two dates bracketing any discontinuity 
greater than 0?02. Values within parentheses are either provisional (two decimals) or extrapolated 
(one decimal). Additional information is given in the explanation concerning time scales (page 
527) and concerning the use of AT with ephemerides (pages 539-541). 
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Table 3.2 Continued 

CORRECTIONS 
The American Ephemeris, 1970-1978 

The corrections tabulated below should be added to AE+180° and Aa + 180° in the 
Ephemeris for Physical Observations of Jupiter for the years 1970-1978. These 
corrections should also be subtracted from the Longitude of Central Meridian (Sys-
tem I and System II). 

1970 +0.03 
1971 +0.02 
1972 +0.02 
1973 +0.01 
1974 0.00 
1975 -0 .01 
1976 -0 .02 
1977 -0 .03 
1978 -0 .03 

The American Ephemeris, 1972-1980 
All the negative values of the Astrometric Declination of the four principal minor 

planets, Ceres, Pallas, Juno, Vesta, for the years 1972-1980 require a correction of 
-o.1. 
For example, on page 281 of this volume: 

1978 Aug. 16 for -31°15'52':4 read -31°15'52r5 

The American Ephemeris, 1972-1977 
The mean motion for the Earth in the table of mean elements at the top of page 

216 is referred to a moving equinox while the mean motions for Mercury, Venus and 
Mars are referred to a fixed equinox. For consistency, the Earth's mean motion 
should also have been referred to a fixed equinox; in which case its value should 
have been 0.985609. 

CIVIL CALENDAR 
New Year's Day . . . . . Sun. Jan. 1 Labor Day Sept. 4 
Lincoln's Birthday . . . . Sun. Feb. 12 Columbus Day . Mon. Oct. 9 
Washington's Birthday . Mon. Feb. 20 Veterans Day . Sat. Nov. 11 
Memorial Day . Mon. May 29 General Election Day . . , . Tue. Nov. 7 
Independence Day . . . . Tue. July 4 Thanksgiving Day . . . , . Thu. Nov. 23 
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mean solar days or 365 days, 6 hours, 13 minutes, 53 seconds. Keep 

in mind that the perhelion is continually precessing. 

Julian Day; The number of each day, counted consecutively since 

the beginning of the present Julian period on January 1, 4713 B.C. 

The Julian Day begins at noon, 12 hours later then the corresponding 

civil day (see Table 3.3). 

Julian Calendar: A calendar replaced by the Gregorian Calendar. 

The Julian year was 365.25 days, the fraction allowed for the extra day 

every fourth year (leap year). There are 12 months, each 30 or 31 days 

except for February which has 28 days or in leap year 29. "Thirty days 

hath September, April, June, and November. All the rest have 31, ex-

cepting February, which has 28, although in leap years 29." 

Figure 3.2 Nodal Passages of the Earth's Orbit 
(From Bowditch, 1962) 



Table 3.3: Julian Day Number (From EB, 1965) 

Days Elapsed at Greenwich Noon, A.D. 1950-2000 

VI AK JAN. 0 hEB. 0 MAR. 0 APR. 0 MAY 0 JUNE 0 JULY 0 AUG. 0 SEP. 0 OCT. 0 NOV. 0 OEC. 0 

1 '<50 243 3282 3313 3341 3372 3402 3433 3463 3494 3525 3555 3586 3616 
3647 3678 3706 3737 3767 3798 3828 3859 3890 3920 3951 3981 
4012 4043 4072 4103 4133 4164 4194 4225 4256 4286 4317 4347 

1953 4378 4409 4437 4468 4498 4529 4559 4590 4621 4651 4682 4712 
1954 4743 4774 4802 4833 4863 4894 4924 4955 4986 5016 5047 5077 
L>><5 243 5108 5139 5167 5198 5228 5259 5289 5320 5351 5381 5412 5442 
1956 5473 5504 5533 5564 5594 5625 5655 5686 5717 5747 5778 5808 
1957 5839 5870 5898 5929 5959 5990 6020 6051 6082 6112 6143 6173 
1958 6204 6235 6263 6294 6324 6355 6385 6416 6447 6477 6508 6538 
1959 6569 6600 6628 6659 6689 6720 6750 6781 6812 6842 6873 6903 
I960 243 6934 6965 6994 7025 7055 7086 7116 7147 7178 7208 7239 7269 
IW.1 7300 7331 7359 7390 7420 7451 7481 7512 7543 7573 7604 7634 
1962 7665 7696 7724 7755 7785 7816 7846 7877 7908 7938 7969 7999 
[ OF.3 8030 8061 8089 8120 8150 8181 8211 8242 8273 8303 8334 8364 
1964 8395 8426 8455 8486 8516 8547 8577 8608 8639 8669 8700 8730 
1965 243 8761 8792 8820 8851 8881 8912 8942 8973 9004 9034 9065 9095 
1966 9126 9157 9185 9216 9246 9277 9307 9338 9369 9399 9430 9460 
1967 9491 9522 9550 9581 9611 9642 9672 9703 9734 9764 9795 9825 
1968 9856 9887 9916 9947 9977 *0008 *0038 *0069 *0I00 *0130 *0161 *0I91 
1969 244 0222 0253 0281 0312 0342 0373 0403 0434 0465 0495 0526 0556 
1970 244 0587 0618 0646 0677 0707 0738 0768 0799 0830 0860 0891 0921 
1971 0952 0983 1011 1042 1072 1103 1133 1164 1195 1225 1256 1286 
1972 1317 1348 1377 1408 1438 1469 1499 1530 1561 1591 1622 1652 
1973 1683 1714 1742 1773 1803 1834 1864 1895 1926 1956 1987 2017 
1974 2048 2079 2107 2138 2168 2199 2229 2260 2291 2321 2352 2382 
1975 244 2413 2444 2472 2503 2533 2564 2594 2625 2656 2686 2717 2747 
1976 2778 2809 2838 2869 2899 2930 2960 2991 3022 3052 3083 3113 
1977 3144 3175 3203 3234 3264 3295 3325 3356 3387 3417 3448 3478 
1978 3509 3540 3568 3599 3629 3660 3690 3721 3752 3782 3813 3843 
1979 3874 3905 3933 3964 3994 4025 4055 4086 4117 4147 4178 4208 
1980 244 4239 4270 4299 4330 4360 4391 4421 4452 4483 4513 4544 4574 
1981 4605 4636 4664 4695 4725 4756 4786 4817 4848 4878 4909 4939 
1982 4970 5001 5029 5060 5090 5121 5151 5182 5213 5243 5274 5304 
1983 5335 5366 5394 5425 5455 5486 5516 5547 5578 5608 5639 5669 
1984 5700 5731 5760 579I 5821 5852 5882 5913 5944 5974 6005 6035 
1985 244 6066 6097 6125 6156 6186 6217 6247 6278 6309 6339 6370 6400 
19S6 6431 6462 6490 6521 6551 6582 6612 6643 6674 6704 6735 6765 
1987 6796 6827 6855 6886 6916 6947 6977 7008 7039 7069 7100 7130 
1988 7161 7192 7221 7252 7282 7313 7343 7374 7405 7435 7466 7496 
1989 7527 7558 7586 7617 7647 7678 7708 7739 7770 7800 7831 7861 
1990 244 7892 7923 7951 7982 8012 8043 8073 8104 8135 8165 8196 8226 
1991 8257 8288 8316 8347 8377 8408 8438 8469 8500 8530 8561 8591 
1992 8622 8653 8682 8713 8743 8774 8804 8835 8866 8896 8927 8957 
1993 8988 9019 9047 9078 9108 9139 9169 9200 9231 9261 9292 9322 
1994 9353 9384 9412 9443 9473 9504 9534 9565 9596 9626 9657 9687 
1995 244 9718 9749 9777 9808 9838 9869 9899 9930 9961 9991 •0022 *0052 
1996 245 0083 0114 0143 0174 0204 0235 0265 0296 0327 0357 0388 0418 
1997 0449 0480 0508 0539 0569 0600 0630 0661 0692 0722 0753 0783 
1998 0814 0845 0873 0904 0934 0965 0995 1026 1057 1087 1118 1148 
1999 1179 1210 1238 1269 1299 1330 1360 1391 1422 1452 1483 1513 
2000 254 1544 1575 1604 1635 1665 1696 1726 1757 1788 1818 1849 1879 

Gregorian Calendar: The calendar used for civil purposes through-

out the world, replacing the Julian calendar and closely adjusted to 

the tropical year. 
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Note that it is common practice among satellite data users to refer 

to the Julian day or date of a data set in terms of the day number of 

the corresponding year (1-365 or 1—366)• This is not inconsistent with 

the classical definition since the initial day of the sequence is arbi-

trary. 

3.2 The Annual Cycle and Zodiac 

We must also consider the definition of sidereal time, but before 

doing so, a brief discussion of the annual cycle and the zodiac is in 

order. As the earth progresses through its annual cycle, there are four 

solar passages which are used to distinguish the seasons and divide the 

earth into its so called climate zones. There are two equator crossing 

(equinoxes) and two maximum excursion passages (solstices) of the sun 

with respect to the earth (see Figure 3.3). These are: 

lo March or Spring Equinox 

2. June or Summer Solstice 

3. September or Autumnal Equinox 

4. December or Winter Solstice 

It is commonplace to refer to the summer and winter solstice latitudes 

as the tropic of cancer and the tropic of capricorn, respectively. 

To an observer on the earth the sun appears to achieve a maximum 

latitudinal excursion of +23°27' or -23°27' at the solstices. The zone 

between these two parallels is often referred to as the torrid zone. 

The apparent motion of the sun, of course, is due to the inclination of 

the earth's orbit about the sun. The apparent track of the sun is along 

a plane which is called the ecliptic. When the sun reaches a solstice 

position, the opposite hemisphere is having its winter in which the 

limits of the circumpolar sun are approximately 23°27' from the pole. 
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Figure 3.3 Solar Passages (From Bowditch, 1962) 

These two polar circles define the boundaries between the temperate 

zones and the frigid zones, that is, the so-called arctic circle and 

antarctic circle parallels (see Figure 3.4). 

Figure 3.4 Climate Zones 
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The names used to describe the boundaries of the torrid zone were 

given some 2000 years ago when the sun was entering the constellations 

Cancer and Capricorn at the time of the solstices. By the same token 

the spring and autumnal equinoxes were taking place at the time the 

sun was entering the constellations Aires and Libra. Thus, it is appro-

priate to refer to the solstices and the equinoxes as zodiacal passages. 

What is the zodiac? 

Figure 3.5 The Zodiac (From Bowditch, 1962) 

Strictly, the zodiac is the circular band of sky extending 8° on 

each side of the ecliptic (see Figure 3.5). The navigational planets 

and the moon are within these limits. The zodiac is divided into 12 

sections of 30° each, each section being given the name and symbol 
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(sign) of the constellation within it. The sun remains in each section 

for approximately one month. Due to the precession of the equinoxes, 

the sun no longer enters the aforementioned constellations at the sea-

sonal passages. However, astronomers still list the sun as entering 

these constellations; this is their principal astronomical significance. 

The pseudo-science of astrology assigns additional significance, not 

recognized by all scientists to the position of the sun and planets 

among the zodiacal signs (see Bowditch, 1962). 

Since the precession of the equinoxes plays an important role in 

celestial position fixing, we shall define it: 

Precession of the Equinoxes: A slow conical motion of the earth's 

axis (like the spinning of a top) about the vertical to the plane of 

the ecliptic, having a period of about 26,000 years (25,781 years) 

caused by the perturbative attractions of the sun, moon, and other 

planets on the equatorial protuberence (bulge) of the earth. It results 

in a gradual westward motion of the equinoxes (50.27 arc-seconds per 

year). Because of the precession, the zodiacal configuration with re-

spect to the sun at its seasonal passages, has shifted approximately 

one section or constellation westward. 

At the time of the definition of the zodiac, the sun was entering 

the constellation Aires at the time of the Spring Equinox. This solar 

position is of major importance to the sidereal reference system of 

time. The celestial meridian corresponding to the sun position at the 

time of a spring or vernal (from the Greek for spring) equinox defines 

the reference meridian for sidereal time. The expression "vernal equi-

nox" and associated expressions, are applied to both "times" and 

"points" of occurrence of various phenomena. The vernal equinox is 
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also called the "first point of Aries" (y) or the "rams horns", although 

strictly speaking we should now call it the "first point of Pisces" due 

to the precession of the equinoxes. 

3.3 Sidereal Time 

We can now provide a set of definitions which describe the sidereal 

time system: 

Sidereal Time; Time that is based on the position of the stars. 

A sidereal period is the length of time required for one revolution of 

a celestial body about its primary axis, with respect to the stars. 

Thus, a sidereal year is one revolution of the earth around the sun 

with respect to the fixed celestial reference. 

Now there are 365.24219879 mean solar days in a tropical year. Due 

to the earth's revolution about the sun and the respective orientation 

of the sun and a fixed celestial reference (star reckoning), a sidereal 

day is actually shorter in time than a solar day. In fact, it is easy 

to show that there is exactly one more sidereal day in an annual period 

(vernal equinox to vernal equinox) than there are mean solar days (see 

Figure 3.6). Thus: 

1 mean solar time unit = 1.002737909 sidereal time units 

= 366.24219879/365.24219879 

Therefore, a sidereal day is 3'56" shorter than a solar day. 

Sidereal Year; A sidereal year (i.e. the period of revolution of 

the earth relative to the stars) is 365.2563662 mean solar days (365 

days, 6 hours, 9 minutes, 10 seconds) due to the precession of the 

equinoxes (50.27" per year). 

360°n'sn 27" 365.2563662 = " » • 365.24219879 
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CELESTIAL TRANSIT OCCURS 
3'56.6" PRIOR TO A SOLAR 

Figure 3.6 Difference between a solar and sidereal year 
(Not exact scale). 

Hour Angles; Angular distance west of a celestial meridian or 

hour circle of a body (e.g. the sun) measured through 360° (see Figure 

3.7) There are three conventionally defined hour angles: 

1. Local Hour Angle (LHA): Angular distance west of the Local 

celestial meridian. 

2. Greenwich Hour Angle (GHA): Angular distance west of the 

Greenwich celestial meridian. 

3. Sidereal Hour Angle (SHA): Angular distance west of the Vernal 

Equinox celestial meridian (y). 

(OBSERVER) 

Figure 3.7 Hour Angles 



4.0 GEOMETRICAL CONSIDERATIONS 

4.1 Definitions of Latitude (Station Coordinates) 

Since the earth is not a perfect sphere, there are a selection of 

coordinates to choose from. Most systems are based on the assumption 

that the earth can be represented by an oblate spheriod; that is, a 

geometrical shape in which sections parallel to the equator are perfect 

circles and meridians are ellipses (see Figure 4=1). 

NORTH 

Figure 4.1 Model of the earth (From EB, 1965) 

We define an oblate spheroid in terms of two radial axes (a, b) where: 

a = semi-major axis 

b = semi-minor axis 

We can now define the flattening (f) parameter which is related to 

the eccentricity of the ellipsoid of revolution. We also define the 

eccentricity (e), a parameter which will be considered in the discus-

sion of orbital calculations and conic sections. The flattening (f) and 

23 
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eccentricity (e) are given by: 

f = (a-b)/a (4.1) 

= 0 for a perfect sphere 

e = V a 2 - b2/a (4.2) 

= 0 for a spheroid or a circular orbit 

Also: 

= V2f - f2 (4.3) 

f = 1 - V l - e2 

Note that in the limit as b -»• 0 then e -»• 0 and f -»• 0. Values of these 

parameters for the earth are given by: 

a = 6378.214 km 
b = 6356.829 km . . 
e = 8.1820157° 10" 
f = 3.35289•10 ,-3 

Note that: 

b = a-(l-f) (4.5) 

We can also define a mean earth radius (c) by a weighted average: 

c = (2a + b)/3 
(4.6) 

= 6371.086 km 

Using our adopted model of the geometric shape, we can define the 

two conventional measures of latitude. Following the approach given 

in Chapter 2 of EB and using Figure 4.2 as a guide we first consider 

geocentric latitude: 

Geocentric Latitude: The acute angle (φ) wrt the equatorial plane 

determined by a line connecting the geometric center of the ellipsoid 

and a point on its surface-
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NORTH 

Figure 4.2 Ellipsoid of revolution defining geocentric 
latitude (Based on a figure from EB, 1965) 

It is convenient to define the rectangular components (xc, zc), as 

we shall see later. It is also helpful to provide a derivation of 

and zc in terms of a, e and φ. To do so, we first define the reduced 

latitude β: 

β = the acute angle wrt the equatorial plane determined by a 

line connecting the geometric center of the ellipsoid 

and a point on a circumscribing circle (see Figure 4.2). 

We will use the circumscribing circle later in the discussion 

of the eccentric anomaly. 

Since: 

x = r cosd) = a-cos3 (4.7) c c 
z = r sincb = a\/l-e2 sin3 (4.8) c c 

therefore: 

r = V x 2 + z ^ 0 a V l - e2sin23 (4.9) c c c 
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and: 

now add (4.12) and (4.13) and after some manipulation: 

(4.l0) 

(4.11) 

(4.12) 

(4.13) 

We square (4.10) and (4.11) and after multiplying by 

(4.14) 

(4.15) 

We now combine (4.10) and (4.14) to solve for sing: 

similarly for (4.11) and (4.14): 

(4.16) 

(4.17) 

(4.18) 

Combining (4.16) and (4.7) with (4.15) and (4.8): 

Next, we define geodetic latitude, again following EB: 
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Geodetic Latitude: The acute (φ') wrt the equatorial plane 

determined by a line normal to the tangent place of a point on the 

surface of the ellipsoid and intersecting the equatorial plane. Geo-

detic latitude is often referred to as geographic latitude (see Figure 

4.3). 

Recalling Eqns. (4.7) and (4.8): 

we can now differentiate: 

(4.7) 

(4.8) 

(4.19) 

(4.20) 

(4.21) 

(4.22) 

(4.23) 

(4.24) 

This provides a convenient transformation between the station coordinate 

systems. 

Finally, using Equations (4.10, 4.11) and (4.22, 4.23), it is 

easy to show that: 

and finally: 

Now note: 
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NORTH 

Figure 4.3 Ellipsoid of revolution defining geodetic 
latitude (Based on a figure from EB, 1965) 

A third definition of latitude is often used, particularly in the 

process of surveying, that is astronomical latitude: 

Astronomical Latitude: The acute angle (φ") wrt the equatorial 

plane formed by the intersection of a gravity ray with the equatorial 

plane. This latitude is a function of the local gravitational field 

(direction of a plumb-bob), and is thus affected by local terrain. 

Tabulation of station errors is required to convert to geodetic lati-

tude. Note that most maps are in either geodetic or astronomical 

latitude whereas navigational analysis will usually use a geocentric 

system. 

4.2 Cartesian - Spherical Coordinate Transformations 

It is necessary to define transformations between a spherical 

frame of reference and a cartesian frame of reference. For satellite 

navigation purposes, two systems are convenient: 
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1. Declination-Right Ascension-Radial System (δ,p,r) where we 

have chosen declination to be defined in the same sense as 

co-latitude: 

4.3 Satellite - Solar Geometry 

A standard requirement for satellite data analysis is the defini-

tion of the angular configuration of a satellite and the sun with 

respect to a terrestrial position (φ,λ,r). In order to specify the 

three usual angles (zenith, nadir, azimuth), we first define the fol-

lowing polar coordinates: 

(4.25) 

(4.26) 

(4.27) 

(4.28) 

2. Latitude-Longitude-Radial System (φ,λ,r): 



30 

(4.29) 

(4.30) 

(4.31) 

Converting these three positions to their terrestrial position vectors: 

We can define the solar and satellite zenith (0 ,0 ), nadir (n ,n ), €> S O S 

and azimuth (φ0,φs) angles and relative zenith (0r) and azimuth (φr) 

angles: 

Figure 4.4 illustrates the zenith and nadir angle defini-

tions. 

In order to define the azimuth angles we first define a pointing 

vector (V9Q) which is subtented 90 from Vp in the same hemisphere as 

V and in the plane defined by the center of the earth, the north pole, P 
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Figure 4.4 Definition of zenith and nadir angles. 
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The satellite azimuth (φs ) is defined in the same way. Finally, we 

have the relative azimuth: 

See Figure 4.5 for an illustration. 

and the endpoint of V . Let: 

(4.32) 

(4.33) 

(4.34) 

Furthermore, we define: 

The solar zenith is then given by: 

(4.35) 



"^REFERENCE OF AZIMUTH ANGLE 

\ 
N 

Figure 4.5 Definition of azimuth angles 
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5.0 THE TWO BODY PROBLEM 

5.1 The Inverse Square Force Field Law 

We continue the analysis by considering the two body problem, ig-

noring all of the perturbative influences (i.e., thrust, drag, lift, 

radiation pressure, proton bombardment or solar wind, assymetrical elec-

tromagnetic forces, auxiliary bodies and any aspherical gravitational po-

tential of either body), that is we consider only the mutual attractions 

of a body A with a body B and the resultant motions. Furthermore, we 

assume that the motion under consideration is that of a satellite or 

planetary body B (secondary body of mass m2) with respect to a central 

body A (primary body of mass m1). 

For closed solutions we will utilize the inverse square force field 

law: 

(5.1) 

First, we determine the origin of the above equation. Essentially, 

Equation 5.1 embodies the laws of Kepler and Newton. To review: 

Kepler's Laws (Empirical-aided by astronomical observations) 

I. Within the domain of the solar system all planets describe 
elliptical paths with the sun at one focus. 

II. The radius vector from the sun to a planet generates equal 
areas in equal times. 

III. The squares of the periods of revolution of the planets 
about the sun are proportional to the cubes of their mean 
distances from the sun. 

Newton's Laws of Motion 

I. Every body will continue in its state of rest or of uniform 
motion in a straight line except insofar as it is compelled 
to change that state by an impressed force. 
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XI. Rate of change of momentum (mv) is proportional to the 
impressed force and takes place in the line in which the 
force acts. 

III. Action and reaction are equal and opposite. 

Newton's Law of Universal Gravitation 

Any two bodies in the universe attract one another with a force 
(F12) which is directly proportional to the product of their 
masses (m1,m2) and inversely proportional to the square of the 
distance (r12) between them: 

(5.2) 

where: 

We can derive the inverse square force field law from Newton's 

second law and his law of universal gravitation. Adopting the notation 

in Chapter 2 of EB, the Universal Law of Gravitation states: 

(5.3) 

Now consider an arbitrary inertial reference frame shown in Figure 5.1. 

The force in the x direction F. is: lx 

(5.4) 
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therefore: 

Figure 5.1 Arbitrary inertial coordinate reference 
frame 

Newton's second law states that the unbalanced force on a body in 

the x direction is given by: 

(5.7) 

therefore: 
(5.8) 

and finally: 

(5.5) 

(5.6) 
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or: 

Now repeating the analysis for the y and z components we find: 

(5.9) 

(5.10) 

Now transform to a relative inertial coordinate system as shown in 

Figure 5.2. From above: 

(5.11) 

(5.12) 

(5.13) 

(5.14) 

where: 

Now considering only the x component: 

we note that: 

which is the desired expression for the acceleration of body 2 with 

respect to body 1. 

From our arbitrary inertial analysis: 

(5.15) 

(5.16) 
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Figure 5.2 Relative inertial coordinate reference frame. 

Now since r12 = r21, and cancelling masses, then: 

and subtracting the two equations yields: 

(5.17) 

(5.18) 

(5.19) 

(5.20) 
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and finally: 

where: 

We generally apply (5.22) to a system where the primary mass (m1) is 

much greater than the secondary mass (m2), yielding y approximately 1.0. 

Often in the study of orbital mechanics, an n-body system arises 

in which the desired origin of the coordinate system is the mass center 

or barycenter; that is, motion is relative to the barycenter and not 

any single central body (see Figure 5.3). We refer to such a reference 

system as a Barycentric Coordinate System (see a review in Chapter 2 

of EB). The utility of this frame of reference arises in the event 

that the trajectory of a space vehicle would undergo less disturbed 

motion if referred to a barycenter. Since we are primarily concerned 

with near earth satellites we will forego an examination of the bary-

centric coordinate system. It is useful to examine the governing equa-

tion, however: 

Now repeating the analyses for the y and z components we find: 

(5.21) 

(5.22) 

(5.23) 
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Figure 5.3 Barycentric coordinate reference frame. 
(Based on a figure from EB, 1965) 

5.2 Coordinate Systems and Coordinates 

We first define the celestial sphere: 

Celestial Sphere: An imaginary sphere of indefinitely large 

radius, having the earth as the origin and the funadmental plane being 

an infinite extension of the Earth's equatorial plane (see Figure 5.4). 

To define the celestial sphere we first extend a line along the funda-

mental plane to a point fixed by the vernal equinox (y), which is the 

reference meridian, and let that be the x-axis. The z-axis is given 

by the earth's spin axis or principal axis. An orthogonal coordinate 

system is finally established by defining the y-axis as the cross 

product of the z and x axes (see Figure 5.5). 

and B represents the barycenter. 

where: 



Figure 5.4 The celestial sphere (From Bowditch, 1962) 
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z 

Figure 5.5 The right ascension - declination 
inertial coordinate system. 

This celestial reference frame is often termed a right ascension-

declination inertial coordinate system, in which declination (δ) is 

analogous to latitude (φ) (or as the case may be - colatitude), and 

right ascension (p) is analogous to longitude (λ) or hour angle (HA). 

Note that we refer to the equatorial plane as the fundamental plane, 

the z-axis as the principal axis, the the vernal equinox as the ref-

erence meridian. Also note that the celestial coordinate system is 

not truly an inertial system since it utilizes the terrestrial spin 

axis as the principal axis. Since the earth's spin axis precesses 

(giving rise to the westward precession of the equinoxes) we are left 

with a non-inertial reference frame if we consider very long time 

periods. There is also a lunar influence on the earth's spin axis 

which causes a nutation having a periodicity of approximately 18.5 
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years. Superimposed on these motions is the so-called Chandler Wobble, 

which has a period of approximately 14 months and is due to the non-

solid nature of the earth itself. For our purposes, the non-inertial 

variation in the terrestrial spin axis is ignored. 

It should be noted that we can define our coordinate system in any 

way we choose, however, simplicity and convenience are the watchwords. 

In designing coordinate systems for the various orbiting bodies or ve-

hicles contained in the solar system, the same basic principles that 

are used for the earth centered (geocentric) celestial coordinate system 

are applied. Examples of various coordinate systems adopted for orbital 

analysis are referred to as follows (see EB): 

Reference Body Coordinate System 

Earth Geocentric 

Sun Heliocentric 

Moon Selenographic 

Mars Arcocentric 

Satellite Orbit Plane 

It should also be pointed out that there are a choice of coordi-

nates to be used once the coordinate system is defined. Again, the 

choice is arbitrary, however, the chosen coordinate parameters should 

have a natural relationship between the observer and the observed de-

pending on whether measurement, calculation, or description is the 

nature of the problem on hand. Again, there are a variety of choices: 

1. Declination (δ) - right ascension (p) - radial distance (r) 

2. Declination (δ) - hour angle (HA) - radial distance (r) 
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3. Latitude (φ) - longitude (λ) - height (h) 

4. Elevation (H) - azimuth (φ) - slant range (d) 

5. Zenith (0) - azimuth (φ) - altitude (h) 

6. Cartesian (x,y,z) 

The solution of the governing equation (5.22) given in an earth-

relative celestial coordinate system will yield three constants after 

the first integration (of the three component equations), and three 

constants after the second. Since (5.22) is an acceleration form of a 

linear, second order, ordinary differential equation, the first set of 

constants are initial velocity terms (x,y,z) and the second set of 

constants are initial position terms (xo,yQ,zo). Thus, if we are given 

a position vector and a velocity vector at an epoch time t (six orbital 

elements and an epoch), we have a means to solve the governing equation. 

Usually, this set of initial elements is not available since obser-

vations of the secondary body B are made from a rotating primary body 

A (that is a coordinate system that is different from that in which the 

analysis will be performed). That is why elevation-azimuth angle ob-

servations or range-range rate signals must first be transformed to a 

set of convenient orbital elements in the preferred coordinate system. 

Since this problem comes under the more general problem of orbital de-

termination we will not consider it any further. 

5.3 Selection of Units 

Simplicity and computational efficiency can be achieved with the 

proper selection of units, based on the particular orbital problem. 

The proper choice of physical units for length, mass, and time is pri-

marily determined by the dimensionality of the primary body A. We 
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shall discuss two systems of units; the Heliocentric (solar origin) 

and Geocentric (terrestrial origin) systems. 

1. Heliocentric Units 

Length: Astronomical Unit (A.U.) 

The mean distance between the sun and a fictitious 

planet, subjected to no perturbations, whose mass 

and sidereal period are the values adopted by Gauss 

in his determination of Kg (we will discuss Kg 

later)„ 

1 A.U. = 1.496 • 108 km 93,000,000 miles) per A.U. 

Mass: Mass of Sun (nig) 
33 

mQ = 1.9888822 • 10 gm per solar mass (s.m„) 

Now if we use our previous definition: 
(5.24) 

where: 

we can define normalized mass factors for the nine planets. 

Note that the mass of a planet in the heliocentric system 

would also include the mass of its moons. Table 5.1 pro-

vides normalized mass factors for the nine planets. 
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Table 5.1: Solar System Normalized Mass Factors 

Planet Normalized Mass Factor (y) 

Mercury 1.0000001 

Venus 1.0000024 

Earth-Moon 1.0000030 

Mars 1.0000003 

Jupiter 1.0009547 

Saturn 1.0002857 

Uranus 1.0000438 

Neptune 1.0000512 

Pluto 1.0000028 

2. Geocentric Units 

Length: Earth equatorial radius (e.r.) 

1 e.r. = 6378.214 km (- 3960 miles) per e.r. 

Mass: Mass of earth (m ) e 
27 me = 5.9733726 • 10 gm per earth mass (e.m.) 

Note the mass of the moon (mm): 
25 m = 7.3473218 • 10 gm per moon mass (m ) m m 

must be considered as part of the planetary mass when con-

sidering the earth orbit in a heliocentric system, but is 

ignored when considering a satellite in a geocentric system. 

5.4 Velocity and Period 

We need to define the velocity and period of an orbiting body. 

Consider first the circular orbit of a satellite at height h (mass mg) 

above the earth (radius R ). Therefore, the geocentric radius r is 



47 

given by: 

(5.25) 

(5o26) 
and: 

•4 2 
However, the magnitude of m r is a centrifugal force -m »V /r where V s s 
is the circular velocity at orbital altitude. Therefore in scalar form: 

(5.27) 

(5.28) 

(5.29) 

(5.30) 

Therefore V is the required orbit velocity for a circular orbit at 

height h. 

Since the circular orbital track would be a distance of 2ir(Re + h), 

for a single revolution, the orbital period (P) would be 2ir-(Re + h)/V, 

or: 

(5.31) 

Note that as the height of a satellite increases, the velocity required 

to maintain it in circular orbit decreases. See Figure 5.6 for an 

illustration. Note, however, from a propulsion point of view, more 

energy is expended in lifting ;a satellite against gravity to reach a 

higher orbit, than is gained in the reduction or the forward speed re-

quired for orbit injection. 
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Figure 5«6 Velocity and period of a satellite in 
circular orbit as a function of altitude 
(From Widger, 1966) 

3/2 1/2 
If we solve P = 2iT.(Re + h) ' /(Kp ) for h using a period P of 

24 hours, we have solved for the required height of a geosynchronous 

satellite; that is, an orbital configuration in which the period is 

that of a single rotation of the earth. The required height for a 

geosynchronous satellite in a circular orbit is thus approximately 

35,863 km (42241.214 km from geocentric origin). 

Now since we know the orbital period P, we can determine the ground 

speed (V ) of a circular orbit, i.e„, the velocity at radius Rgo 

Since the path of one revolution is 2ir • Rg, then 

(5o32) 

(5.33) 

and applying equation (5-29): 



Table 5.2 tabulates various orbital characteristics as a function 

of satellite altitude. 

Table 5.2: Orbital Characteristics as a Function of Altitude -
R = 6370 km or 3435 N. miles (From Widger, 1966). 

O r b i t 
Al t i tude 

Km 

O r b i t 
Al t i tude 
N . Mi les 

Re+ h 
K m 

R « + h 
N . M i l e s ( A ) 

O r b i t a l 
Ve loc i ty 

Ground 
Ve loc i ty 

(Non-Ro ta t ing 
E a r t h ) 

O r b i t a l 
P e r i o d 

W e s t w a r d 
D i s p l a c e , 
P e r O r b i t 
D e e . L o n g . 

O r b i t 
Al t i tude 

Km 

O r b i t 
Al t i tude 
N . Mi les 

Re+ h 
K m 

R « + h 
N . M i l e s ( Re ) ( A ) k m / h r kno t s kmAir knots h o u r s m i n . 

W e s t w a r d 
D i s p l a c e , 
P e r O r b i t 
D e e . L o n g . 

150 81 6520 3516 1, ,024 . 9770 28111 15245 27464 14894 1, ,458 87. .48 21. ,87 
185 100 6555 3535 1, .029 . 9 7 1 7 28080 15203 27285 14773 1, ,468 88. ,08 22. ,02 
200 108 6570 3543 1, ,031 . 9 6 9 5 28004 15188 27150 14725 1, ,476 88. ,56 22. , 14 
250 135 6620 3570 1, .039 . 9 6 2 2 27901 15130 26846 1(1558 1, .492 89. ,52 22. ,38 
278 150 6648 3585 1, .044 . 9582 27839 i»u99 26675 1 , 4 6 8 1. ,502 90. , 12 22. ,53 
300 162 6670 3597 1, ,047 . 9 5 5 0 27795 15074 26544 143 96 1. ,509 90. ,54 22. ,64 
350 189 6720 3624 1, .055 • . 9 4 7 8 27690 15017 26245 14233 1. ,526 91. ,56 22. ,89 
371 200 6741 3635 1. .058 . 9 4 5 0 27649 14994 26128 14169 1, , 533 91. ,98 23, ,00 
400 216 6770 3651 1. ,063 . 9 4 0 8 27589 14962 25956 14076 1, ,543 92. ,58 23, .15 
450 243 6820 3678 1. ,071 . 9 3 3 9 27488 14905 25671 13920 1, .560 93. .60 23. ,40 
463 250 6833 3685 1. , 073 . 9 3 2 2 27462 14893 25600 13883 1. ,565 93. ,90 23. ,48 
500 270 6870 3705 1. ,079 . 9 2 7 1 27386 14851 25390 13768 1. ,578 9 4 . 6 8 23. ,67 
550 297 6920 3732 1. ,086 . 9 2 0 4 27287 14798 25115 13620 1, , 595 95. ,70 23. ,93 
556 300 6926 3735 1, ,087 . 9 1 9 7 27277 14793 25087 1 3605 1. , 597 9 5 . 8 2 2 3 . 9 6 
600 324 6970 3759 1. ,094 . 9 1 3 8 27189 14745 24845 1 3474 1. ,612 96. 72 24. 18 
649 350 7019 3785 1, ,102 . 9 0 7 5 27095 14694 24589 1 3335 1. ,629 9 7 . 7 4 24. ,44 
650 351 7020 3786 1. , 102 . 9 0 7 3 27092 14692 24581 13330 1. ,629 97. ,74 24. 44 
700 378 7070 3813 1. ,110 . 9 0 0 9 26995 14640 24320 13189 1. ,647 98. 82 24. 71 
741 400 7111 3835 1, ,116 . 8 9 5 7 26919 14597 241 11 13075 1. 661 99. 66 24 . 92 
750 405 7120 3840 1, ,118 . 8 9 4 5 26902 14588 24064 13049 1. ,664 99. 84 • 24. 96 
boo 432 7170 " 3867 1. ,126 . 8 8 8 3 2680? 145J6 23813 "12912 ' 1, , 6S2 100. 92 25. ,23 
834 450 7214 3885 1, .131 . 8 8 4 2 26725 14503 23630 12824 I . ,697 101. .82 25. ,46 
850 459 7220 3894 1. ,134 .8821 26715 14487 23565 12779 1, ,699 101. 94 25. .'49 
900 486 7270 3921 1. ,141 . 8 7 6 1 26624 14436 23325 12647 1. .717 103. ,02 25. .76 
927 500 7297 3935 1, ,146 . 8 7 2 9 26575 14411 23197 12579 1. ,727 103. 62 25. 91 
950 513 7320 3948 1, , 149 . 8 7 0 1 26531 14388 ' 25085 12519 1. M 3 104. i o 26. O'J 

1000 540 7370 3975 1, ,157 . 8 6 4 2 26441 14338 22850 12391 1, ,753 105. 18 26. 30 
1019 550 7389 3985 1, . 160 . 8 6 2 0 26408 14320. 22764 12344 1. ,760 105. 60 26. ,40 
1050 567 7420 . 4002 1, .165 . 8 5 8 3 26352 14290 22618 12265 1. ,771 106. ,26 26. ,57 
u o o 594 7470 4029 1, , 173 . 8526 26264 14243 22393 12144 1. .788 107. ,26 26, .82 
1112 600 7482 4035 1, ,175 . 8 5 1 3 26243 14232 22341 121 16 1. ,793 107. 58 26. 90 
1150 621 7520 4056 1, ,181 . 8 4 6 9 26179 14194 .22171 12021 1. ,806 108. 36 27. ,09 
1200 648 7570 4083 1, , 189 . 8 4 1 3 26089 14147 21949 11902 1. ,825 109. ,50 27. 38 
1205 650 7575 4085 1, . 189 . 8 4 0 9 26083 14145 2193*3 11895 1. ,826 109, ,56 27. ,39 
1250 674 7620 4109 1, .196 . 8 3 6 0 26005 14103 21740 11790 1, ,842 110, ,52 27, 63 
1297 700 7667 4135 1. ,204 . 8 3 0 7 25925 14059. 21536 11679 1. ,860 111. ,6o 27, ,90 
1300 ' 701 7670 4136 1, .204 . 8 3 0 5 25919 14057 21526 11674 1, ,861 111. ,66 27. ,92 
1350 728 ' 7720 4163 1, ,212 .8251 25834 14011 21316 11560 1. ,879 112. 74 28. 19 
1390 750 7760 4185 1. ,218 . 8208 25769 13974 21151 11470 1. ,894 113. 64 28. ,41 . 
1400 755 7770 4190 1, ,220 . 8 1 9 8 25752 1 3966 21111 11449 1. .897 113. ,82 28. ,46 
1450 782 7820 4217 1 .228 . 8146 25670 13921 20911 1 1 340 1, ,915 114. ,90 28. , 7} 
1483 . 800 7853 4235 1, . 2 3 3 . 8 1 1 1 25615 13891 20776 11267 1, ,928 115, ,68 28. ,92 
1500 809 7870 4244 1 .236 . 8 0 9 4 25589 13876 20712 11231 1, ,934 116. ,04 29. ,01 
1550 836 7920 4271 1 . 2 4 3 . 8 0 4 3 25508 13833 20516 11126 1, ,952 117 .12 2 9 . 2 8 
1575 850 7945 4285 1 . 2 4 7 .8016 25468 13810 20415 1 1070 1. ,961 117, ,66 29. ,42 
1600 863 7970 4298 1 .251 . 7 9 9 2 25428 13789 20322 11020 1. .971 118, .26 29, ,57 
1650 890 8020 4325 1 . 2 5 9 . 7 9 4 2 25349 13747 20132 10918 1. . 989 119. .34 • 29. ,84 
1668 900 8038 4335 1, .262 . 7 9 2 4 25321 13730 20064 10880 1, ,996 119, ,76 29. ,94 
1700 917 8070 4352 1 .267 . 7 8 9 3 25267 13703 19943 10816 2, .008 120, .48 30, ,12 
1750 944 8120 4379 1 . 275 . 7 8 4 4 25191 13662 19760 10716 2, ,027 12! , .62 30. ,41 
1761 950 8131 4385 1 . 2 7 7 . 7834 25175 13651 19722 10694 2, ,031 121 , ,86 30, .47 
1800 971 8170 4406 I . 2 8 3 . 7796 25113 13619 19578 10617 2, ,046 122, ,76 30, , 6 9 
1850 998 8220 4433 1 .291 . 7 7 4 9 25039 1 3578 19403 10522 2, .064 123. ,84 30, ,96 
1853 1000 8223 4435 1 . 2 9 1 . 7 7 4 5 25033 13574 19388 10513 2, ,066 123, ,96 30, ,99 

35815 19326 42185 22761 6 . 6 2 2 . 1 5 1 0 11052 5992 — — 24 .000 1440. ,00 
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If a point P moves so that its distance from a fixed point 
(called the focus) divided by its distance from a fixed line 
(called the directrix) is a constant e (called the eccentricity), 
then the curve described by P is called a conic (so-called 
because such curves can be obtained by intersecting a plane 
and a cone at different angles). If the focus is chosen at 
origin 0 the equation of a conic in polar coordinates (r,v) is, 
if OQ - p and LM - d: 

r . P „ ed 
1 + ecosv 1 + ecosv 

Figure 5.7 Conic sections (Based on a figure from Spiegal, 1968). 

Thus we see that if p + 0, then: 

0 < e < 1 the conic is an ellipse 

e = 1 the conic is a parabola 

1 < e < 00 the conic is a hyperbola 

which is simply the equation describing conic sections (see Figure 5.7), 

where: 

(5.34) 

5.5 Elliptic Orbits 

In the consideration of elliptic orbits governed by our principle 

equation, the radius r, of the second body from the primary body, can 

be given by: 
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In the following discussions the term semi-major axis (a) will be 

used. It is defined as half the maximum diameter of the conic. Note 

that (see Dubyago, 1961): 

a = 0 for parabolic motion 

0 < a < w for elliptic or circular motion 

-oo < a < o for hyperbolic motion 

2 

For an ellipse, a and p are related through e by p=ed=a(l-e )» 

As an aside, it is interesting to note that for any arbitrary 

position of a vehicle, within the influence of the terrestrial gravi-

tational field, there is a given escape velocity (V ). The magnitude 6SC of the initial velocity vector r determines the type of path, that is: 

elliptic if || < Vegc 

parabolic if ||r|| = V&sc 

hyperbolic if ||r|| > V ^ 

The escape velocity from a celestial body is given by: 

Vegc = (2gR)1/2 (5.35) 

where: 

g = gravitational constant of body 

R = radius of body 

For the earth and moon, the escape velocities of a missile launched 

from the surface are: 

Body V esc 

Earth - 11 km ° sec 1 

Moon - 2.5 km • sec ̂  
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Contrast the above to the velocity of an air parcel at the earth's 

surface (no wind): 

(5.36) 

where Ω is the earth's angular velocity and Re is the earth radius. 

The equation for an ellipse, in polar coordinates with the origin 

at a focus, is given by: 

(5.37) 

Noting that p * 0, 0 < e < 1, and 0 < a < » for the planets, consti-

tutes a proof of Kepler's First Law. 

A proof of Kepler's Second Law requires an integration of the area 

swept out by the radius vector r. This results in the definition of 

the orbital period P in the relative inertial coordinate system which 

we have established. The period is then given by: 

(5.38) 

which corresponds to equation (5.31). A proof of equation (5.38) is 

given in Chapter 3 of EB. 

This is the appropriate form in a relative inertial coordinate 

system. Note that for circular orbits: 

(5.39) 

which corresponds to equation (5.30). For elliptic orbits V is not 

constant. We will derive the velocity for elliptic orbits in Chapter 

6. 
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Now since the period P of a body is: 

It is interesting that Kepler derived his laws empirically, involving 

many years of laborious data reduction. His 3rd law did not include 

the mass factor y since the accuracy in his data simply did not allow 

the detection of the secondary mass effect (see EB). 

5.6 The Gaussian Constant 

We can now define the Gaussian constant Kg, noting that: 

and choosing a heliocentric system of characteristic units. It is 
2 

a simple matter to compute the numerical value of K or the Gaussian 

constant: 

thus: 

Now since the period of the Earth is 365.256365741 mean solar days 

(celestial period), and if the semi-major axis of the earth's orbit is 
— 3/2 -1 taken to be 1 A.U. and ^y = 1.0000015, then K @ = 0.017202099 A.TJ. -day . 

(5.43) 

(5.44) 

(5o42) 

The squares of the periods of revo-
lution of the planets about the Sun 
are proportional to the cubes of 
their mean distances from the Sun. 

(5.41) 

we can square both sides to get Kepler's Third Law: 

(5.40) 
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This was the procedure Gauss used to determine Kg in his 1809 

publication "Theoria Motus Corporum Coelestium In Sectionibus Conicis 

Solem Ambientium", i.e., Theory of the Motion of Heavenly Bodies Re-

volving Round the Sun in Conic Sections (see EB). Similar procedures 

are used to obtain the gravitational constants of the other planets. 

Table 5.3 provides gravitational constant data for the planets. 

Table 5.3: Gravitational Constants of the Major Planets 
(From Escobal, 1965) 

Planet Semimajor Axis 
(km) 

Gravitational Constants (K_) 
(A.U.3/2/Mean Solar Day) 

Mercury 

Venus 

Earth 

Mars 

Jupiter 

Saturn 

Uranus 

Neptune 

Pluto 

2,424 

6,100 

6,378.15 

3,412 

71,420 

60,440 

24,860 

26,500 

4,000 

6.960 x 10 - 6 

2.691 x 10 -5 

2.99948 x 10 -5 

9.786 x 10 

5.3153 x 10 -4 

2=908 x 10 -4 

1.136 x 10 -4 

1.240 x 10 -4 

2o700 x 10 -5 

Note that for Table 5.3, 1 A.U. = 149,599,000 km and Kp is related to 

K„ by K = im /mn. Also note that in the geocentric system, the 0 p 0 p 0 
present value of Kg (earth gravitational constant) is 0.07436574 e.r 

3/2 

min - 1 
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then: 

5.7 Modified Time Variable 

It is often convenient in the treatment of orbital problems to 

transform the time dimension to the so-called modified time variable 

(T). The transformation involves a gravitational constant (e.g., K^ 

or K ) and an epoch time t „ In Heliocentric units: e ^ o 

(5.45) 

(5.46) 

whereas in Geocentric units: 

The advantage of using this quantity can be seen if we recast 

the governing equation in terms of x. Since: 

(5.47) 

(5.48) 

(5.49) 

transforms to: 

2 
and K does not appear. 

Use of characteristic units, leads to a new unit of velocity 

(V u), the circular satellite unit velocity (see Chapter 3 of EB): 

(5.50) 

(5.51) 

In the Heliocentric System: 
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In the Geocentric System: 

(5.53) 

(5.54) 

5.8 Classical Orbital Elements 

Let us first establish an elliptic frame of reference in which 

we consider coordinates along x , y^ axes in a plane containing the 

orbit (see Figure 5„8). 

Figure 5.8 Elliptic frame of reference 
(Based on a figure from EB, 1965) 
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We have already defined: 

e = eccentricity 
= Va2 _ b2/a 

a = semi-major axis 

b = semi-minor axis 

p = semi-parameter of conic 

= a(l-e2) 

v = true anomaly 

In addition, the positions where dr/dx are zero are called apsis 

(plural for apse). Elliptical orbits possess two points where the 

above condition is satisfied, i.e., the minimum radius position 

(perifocus) and the maximum radius position (apofocus). In discussing 

the sun in its ecliptic, we refer to the apsis as perihelion and ap-

helion (see Figure 5.9). 

ORBITAL 
TRACK " 

EARTH 

Figure 5.9 Perihelion and aphelion of earth in solar orbit 
(Not exact scale) 
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A complete set of orbital elements sufficient to describe an orbit 

are the "Classical Orbital Elements". They are as follows; 

1. Epoch Time (tQ): Julian day and GMT time for which the 
following elements are defined <> 

2. Semi-major Axis (a): Half the distance between the two apsis 
of perifocus and apofocus. 

3. Eccentricity (e): Degree of ellipticity of the orbit. 

4. Inclination (i): Angle between the orbit plane and the 
equatorial plane of the primary body. 

5» Mean Anomaly (Mq): Angle in orbital plane with respect to 
the center of a mean circular orbit, having a period equi-
valent to the anomalistic period, from perifocus to the 
satellite position (anomalistic period is discussed in 
Chapter 6)„ 

6. Right Ascension of Ascending Node : Angle in orbital 
plane between vernal equinox (reference meridian) and 
northward equator crossing. 

7. Argument of Perigee (OJ0) : Angle in orbit plane from 
ascending node to perifocus. 

The above set of elements satisfies the requirement of defining six 

constants and an epoch time noted in Section 5.2. Note that if the 

epoch time were to correspond to perifocus, the mean anomaly would be 

zero and thus would be an unnecessary parameter. This is generally not 

the case with either NASA, NESS, ESA, or JMS orbital element trans-

missions. Of the 7 parameters, the three angular quantities (MQ, too) 

are subscripted similar to tQ indicating that they are time dependent 

quantities. The time dependence of a two body orbit will be discussed 

in Chapter 6. The European Space Agency has used true anomaly rather than 

mean anomaly in their orbital transmissions for the Meteosat and GOES-1 

satellites. This presents no difficulty as will be seen in the following 

section. Appendix A provides examples of orbital parameter trans-

missions for various U.S., European, and Japanese satellites. 
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5.9 Calculation of Celestial Pointing Vector 

First we recall the essential angles: 

i = Orbital inclination 

= Right ascension of ascending node (note that is 
defined as the right ascension of descending node) 

u)Q = Argument of perigee 

Following the approach given in Chapter 3 of EB, the angles i, u)Q 
(the "Classical Orientation Angles") are used to define the orbit 

plane in celestial space, defined by an orthogonal (I, J, K) coordinate 

system (as shown in Figure 5.10). 

Figure 5.10 The Classical Orientation Angles and the 
Orthogonal I, J, K Coordinate System 
(Based on a figure from EB, 1965) 

Note that: 

0 £ i < ir 

0 < ft < 2ir — o 
0 < <D < 2tt — o 
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From Figure 5.10 it is convenient to define retrograde and direct 

orbits: 

1. Retrograde: Orbits whose motion is in the direction of y to x. 

2. Direct or Prograde: Orbits whose motion is in the direction of 

x to y. 

Compare the above with the classic definition of a retrograde orbit: 

Motion in an orbit opposite to the usual orbital 
direction of celestial bodies within a given system; 
i.e0, a satellite motion, in a direction opposite to 
the motion of the primary body. 

Since the use of angles is cumbersome, we transform to a set of 

orthogonal vectors (P, Q, W) in a cartesian reference frame (see 

Figure 5.11): 

P is a vector pointing toward perifocus 

Q is in the orbit plane and advanced 90° from P 

W is the normal to the orbit plane 

SATELLITE 

figure 5.11 The P, Q, W orthogonal reference frame 
(Based on a figure from EB, 1965) 
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The set of orthogonal vectors (U, V, W) can also be defined (see 

Figure 5.12). These vectors will not be used in our analysis, however, 

they are useful vectors for additional analytical study (see EB for 

an explanation): 

U is the vector always pointing at the satellite in the 

plane of the orbit 

V is the vector advanced from U, in the sense of increasing 

true anomaly, by a right angle 

W is the normal to the orbital plane and is given by U x V 

+ z 

Figure 5.12 The U, V, W orthogonal reference frame 
(Based on a figure from EB, 1965) 

Note that if the satellite is at its perifocal position, the (P, Q, W) 

orthogonal set is equivalent to the (U, V, W) orthogonal set. 

Since (i, a)Q) are the Euler angles of a coordinate rotation, 

we can develop a transformation between the (I, J, K) system and the 
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(P, Q, W) system. The direction cosines of this transformation are 

thus: 

(5.55) 

(5.56) 

(5o57) 

Therefore we have: 

(5.58) 

where (P, Q, W) is wrt the orbit plane frame of reference and (I, J, K) 

is wrt the celestial frame of reference. Note that the (P, Q, W) 

system utilizes (x^y^ z ) coordinates (see Figure 5.10) whereas the 

(I, J, K) system utilizes (x, y, z) coordinates (see Figure 5.11). 

Now if (P, Q, W) are mutually orthogonal and we define the trans-

formation matrix B, where: 
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(5.59) 

then: 

(5.60) 

and since: 

(5.61) 

therefore: 

(50 62) 

where: 

(5.63) 

so that: 

(5.64) 

Now since the satellite always remains in the P,Q orbital plane, then 

z is always zero. Therefore: ay 
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(5.65) 

implying that if we can determine (x^, y ), we can solve for a celestial 

position vector. Note that if we remain in the orbital plane coordinate 

system as long as possible, we will have an easier time than working 

in a 3-dimensional system. 

In order to determine orbit plane coordinates we need to derive 

Kepler's Equation which relates geometry or position in the orbit plane 

to time. We will restrict the analysis to an elliptical formulation, 

ignoring the parabolic and hyperbolic formulations. We first need a 

new definition, i.e., the eccentric anomaly (see Figure 5.13). 

Eccentric Anomaly (E): The angle measured in the orbital plane 

from the P axis to a line through the origin and another point de-

fined by the projection of the moving vehicle in the y.u direction upon 

a circumscribing circle. Note that this angle is analogous to the 

angle 3 (reduced latitude) which was defined in Chapter 4 during the 

discussion of station coordinates. 

Figure 5.13 Definition of eccentric anomaly 
Based on a figure from EB, 1965) 
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Recalling the definition of true anomaly (also shown in Figure 5.13): 

True Anomaly (v): Angle in the orbital plane with respect to a 

focus of the ellipse from the perifocal position to the satellite 

position. 

and with the aid of the previous figure: 

(5.66) 

(5.67) 

(5.68) 

(5.69) 

(5.70) 

(5.71) 

(5.72) 

(5.73) 

(5.74) 

(5.75) 

(5.76) 

Now since: 

we have: 

therefore from equation (5.67): 

But we know: 

or: 

then: 

Now since: 
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by manipulation: 

(5.77) 

and thus equations (5.72) and (5.77) give us orbital plane coordinates 

in terms of Classical Orbital Elements and the eccentric anomaly. 

We can now develop the relationship between E and v. Noting that: 

(5.78) 

(5.79) 

and with suitable manipulation: 

Also: 

Now using equation (5.79) to define cosv and with suitable manipulation: 

(5.80) 

Equations (5.79) and (5.80) thus provide a transform pair between E 

and v. If we invert the expressions, we have a transform pair between 

v and E. It is easy to show that: 

(5.81) 
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Now we will go through a brief derivation of Kepler's equation. 

First we note: 

Now since: 

therefore: 

and: 

(5.82) 

Next we require some identities that are basic properties of orbits. 

From equation (5.49): 

(5.83) 

(5.84) 

(5.85) 

(5.86) 

(5.87) 

(5.88) 

(5.89) 

(5.90) 

therefore: 

and therefore: 

A proof in Chapter 3 of EB shows that: 
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Now expanding the right hand side of equation (5.90): 

results in the following: 

From the definitions of x , y , x , y it is easy to show that: 0) 0) bi 0) 

(5.91) 

(5.92) 

(5.93) 

( 5 o 9 4 ) 

we find: 

(5.95) 

We now recall the definition of the modified time variable: 

where we understand that from the integration limits, the initial time 

t corresponds to the point on the orbit where E = 0o We shall call 

this time T, the time of perifocal passage. Substituting for x, such 

that E = E^, we have Kepler's equation: 

(5.97) 

(5096) 

Now if we integrate equation (5.87) from x' = 0 to x' = x: 
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Now we call ^yK/a the mean motion n, where: 3/2 

(5o98) 

and it is now apparent that we have a formulation for the mean anomaly 

Note that M is one of the Classic Orbit Elements: 

Mean Anomaly (M): Angle in orbital plane with respect to the 

center of a mean circular orbit, having a period equivalent to the 

anomalistic period, from perifocus to the satellite position. We 

shall defer our discussion of anomalistic period until we discuss 

perturbation theory in Chapter 6« 

We now see what the mean motion has to do with the period. Re-

calling equation (5.40): 

Therefore the mean motion constant (n) and the period (P) are simply 

reciprocal quantities: 

(M): 

M = n(t - T) (5.99) 

(5.100) 

(5.101) 

It is important to note why the recovery of an accurate value of 

the semi-major axis (a) from raw orbit tracking data is so important. 
3/2 Since the period is directly proportional to a any error in 
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recovering the semi-major axis translates to a cumulative error in 

position due to an incorrect period. Figure 5.14 provides a graph for 

both a low orbiting satellite and a geosynchronous satellite indicating 

the period error corresponding to errors in specifying the semi-major axis. 

Figure 5.14 Error in determining satellite period corresponding 
to error in recovering the semi-major axis 

From equations (5.97) and (5.99) we have a relationship between 

M and E: 

M = E - e sinE (5.102) 

however, we want E in terms of M. Since equation (5.102) is a trans-

cendental equation we can transform it. First equation 5.102 is 

differentiated: 

dM = (1 - e cosE)dE (5.103) 
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Next we rearrange and Integrate from the position of perigee at which 

Eq = Mq = 0, to an arbitrary position in the orbit corresponding to 

(Et, Mt): 

(5.104) 

We can now express the term under the integral of equation 5.104 as a 

Fourier expansion: 

(5.105) 

(5.106a) 

(5.106b) 

and all b = 0 since we are integrating an even function. Now using m 

Now substituting for dM from equation (5.103) and noting that 21 = 2ir: 

where 21 is the period of the function and: 
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our definition of M from equation (5.102); 

Now using an integral representation property of Bessel functions (see 

Abramowitz and Stegun, 1972): 

(5.107) 

where J is a Bessel function of the first kind of order m and argu-m 
ment me: 

(5.108) 

(5.109) 

(5*110) 

We can now rewrite equation (5.105) as: 

and integrating, we can finally express the eccentric anomaly E, 

explicitly in terms of M and e with a Fourier-Bessel series: 

where E and M represent the eccentric and mean anomaly at an arbitrary 

time t. 

The above expression remains cumbersome for computer calculations. 

However, the series term can be expanded in powers of e. Noting that 

e < 1.0, we can truncate at some power of e, say 5: 
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(5.lll) 

Simplifying: 

Now if we collect terms in similar powers of e: 
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We now note that all the coefficients of the expansion are less than 

one, thus insuring that the truncation in powers of e only ignores 

increasingly smaller terms. Now we can apply the trigonometric multiple 

angle relationships: 

(5.114) 

Substituting and simplifying we arrive at our final equation for E in 

explicit terms; an expression which involves only a single sin and cos 

calculation insofar as computational requirements are concerned: 

(5.115) 

Note that if we consider only the first power term (for example, in 

the event e is very small), then: 

(5.116) 

To illustrate the error in ignoring the higher order terms we 

examine the eccentric anomaly of the sun with respect to the earth 

under various orders of expansion. Table 5.4 provides the results. 

Appendix D provides a computer solution for an apparent solar orbit 

which considers the above expansion. 
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Table 5.4 Eccentric Anomaly of Sun wrt Earth Under Various 
Orders, of Expansion (Eccentricity of solar orbit 
is o081820157) 

Mean Anomaly Eccentric Anomaly 
1 2 3 4 5 e e e e e 

0 0. 000000 0. 000000 0. 000000 0. 000000 0. 000000 
15 15. 021177 15 o 022850 15. 022978 15. 022987 15. 022988 
30 30. 040910 30. 043809 30. 043980 30. 043987 30. 043986 
45 45. 057856 45. 061203 45. 061300 45. 061292 45. 061291 
60 60. 070858 60. 073757 60. 073698 60. 073678 60. 073677 
75 75. 079032 75. 080706 75. 080494 75. 080478 75. 080479 
90 90. 081820 90. 081820 90. 081546 90. 081546 90. 081548 
105 105. 079032 105. 077359 105. 077147 105. 077164 105. 077165 
120 120. 070858 120. 067960 120. 067900 120. 067920 120. 067919 
135 135. 057856 135. 054508 135. 054605 135. 054613 135. 054611 
150 150. 040910 150. 038011 150. 038182 150. 038176 150. 038176 
165 165. 021177 165. 019503 165. 019631 165. 019621 165. 019622 
180 180. 000000 180. 000000 180. 000000 180. 000000 180. 000000 

The stage is now set for the calculation of a celestial pointing 

vector. We first transform the epoch from t to the time of perifocal 

passage (T). Since: 

M = n(t - T) (5.117) o o 

therefore: 

T = t - M /n (5.118) o o 

Thus we can now solve for M at any arbitrary time t: 

M = n(t - T) (5.119) 

and then solve for E: 

E = M + e sin(M) + ... (5.120) 

We now solve for x and y and note that z is always 0: 0) 0) CO 
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(5.121) 

Now transform to a celestial pointing vector: 

(5.122) 

T 
where B is the transpose of the celestial frame-orbital plane trans-

formation matrix. This completes the desired solution. 

It is useful to summarize the relationships between M, v, and E: 

(5.123) 

(5.124) 

(5.125) 

Now recall that ESA uses True Anomaly (v ) rather than Mean Anomaly 

(Mq) in their orbital element transmissions. Thus before we can apply 

equation (5.118), we first transform Vq to an initial eccentric anomaly 

The initial mean anomaly can now be solved: 

(5.126) 

(5.127) 
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5.10 Rotation to Terrestrial Coordinates 

Finally, we transform to our rotating frame of reference (i.e., 

the earth). This is accomplished by noting that the observer's meri-

dian is rotating with an angular velocity equal to p, that is the 

sidereal rate of change. Thus the observer's right ascension can be 

given by: 

(5.128) 

(5.129) 

in which we have defined: 

where P^ is the daily period (24 hours), tg is a sidereal epoch, and 

SHA is the sidereal hour angle at the epoch We can choose SHA = 0, 

i.e. a time when the Greenwich meridian is in conjunction with the 

vernal equinox. To do so, the "Universal and Sidereal Time" table 

from the American Ephemeris and Nautical Almanac can be used. Table 

5.5 provides an example from the 1978 version for January, in which 

can be seen that on January 1, at 17 16 00 GMT the vernal equinox 

and the Greenwich meridian are aligned. S simply converts solar mean 

time to sidereal time, where: 

S = 366o25/365.25 (5.130) 

Thus, by rotating the (x, y, z) vector through an angle p, we finally 

achieve our desired earth reference vector (x , y , z ): e Je e 

(5.131) 
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Now, using the transformation between cartesian and spherical coor-

dinates, we can solve for the sub-satellite point (φsp, λsp) 

centric coordinates and the satellite height (h). First, we solve for 

latitude and longitude (φ,λ) and the radius coordinate (r) in a spher-

ical reference frame: 

where R is the earth radius at latitude d> and e is the eccentricity e sp 
of the earth itself. 

Computer codes adopted to the above methodology are given in 

Appendices B and D. Appendix B considers an earth-satellite config-

uration whereas Appendix D considers an earth-sun configuration. 

Appendix C consists of a numerical routine used to determine an earth 

satellite equator crossing period which will be discussed in Chapter 

6. Appendix E gives two approximate solutions for determining solar 

position; these routines can be compared to the solution given in 

Appendix D. Appendix F represents a set of library routines applicable 

(5.132) 

Finally we transform to geocentric coordinates (φsp, λsp) and height 

(h): 

(5.133) 
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to the aforementioned orbital codes, and finally Appendix G provides a 

solution for determining the required inclination for a sun-synchronous 

orbit (this problem is discussed in Chapter 6). 
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Table 5.5: Universal and Sidereal Time Table for January, 1978 
(From the American Ephemeris and Nautical Almanac, 
1978) 



6.0 PERTURBATION THEORY 

6.1 Concept of Gravitational Potential 

We will now consider the deviation of an orbit from the ideal, two 

body, inverse square-force field law. In order to do so, we must dis-

tinguish the concepts of empirically correcting orbit calculations due 

to a non-perfect two body system, and the actual prediction of orbit 

positions based on a physical model which accounts for forces that per-

turb a body from perfect two body motion. The first technique has 

received a good deal of study under the general heading of "Differential 

Correction". A discussion of this topic is given in Chapter 9 of EB, 

by Dubyago (1961), and by Capellari et al. (1976). The method consists 

of bringing a predicted orbit position into agreement with a set of 

actual orbit measurements in such a way so as to adjust a set of con-

stant orbital elements to satisfy a new local time period. Thus the 

methodology does not necessarily consider the physical reasons why an 

orbit is perturbed. 

The general area of "Perturbation Theory" consists of developing 

a set of reasonable, time dependent quantities which arise due to 

various perturbation forces, which in turn lead to time dependent ex-

pressions for the orbital elements themselves. This theory, although 

not necessarily adaptable to analytic techniques, has a physical basis 

in facto Since the satellite navigation problem is not really compatible 

with the required procedures used in Differential Correction techniques, 

we shall address the following discussion to perturbation techniques. 

We first need to consider the governing equation in terms of the 

concept of potential. Following the approach of Kozai (1959) and 

EB and using a spherical coordinate system defined by the earth's 

81 
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and since: 

then: 

or simply: 

Equation 6.6 thus states that the acceleration of a body is due to the 

gradient of what we shall call a potential V. 

(6.3) 

(6c 4) 

(6.5) 

(6.6) 

and (x, y, z) are the cartesian components of a radius vector r ex-

tended from the earth center to an arbitrary satellite position. Taking 

partial derivatives with respect to x, y and z yields: 

(6.1) 

(6.2) 
where: 

equatorial plane, we define a potential (V): 
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If we generalize the problem, it is easily seen that V can be 

expressed as a summation of normalized point masses (m.): 

Now if we consider the earth as a series of concentric (circular) 

masses about its center, we see that if we assume an oblate spheroid 

(bulging equator), we are considering a non-symmetric force field as 

shown in Figure 6.1. Makemson et al. (1961) have provided a spher-

idal harmonics expansion of the aspherical potential V of the earth: 

(6.7) 

where: 
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6 = sin-1(z/r) 

r = distance from the earth center to a spacecraft in e.r. 
units 

and the J^s are the spherical harmonic coefficients of the earth's 

gravitational potential. Equation (6.8) has been normalized such that 

J-ĵ  = 1. The term 6 simply expresses the error due to ignoring higher 

order terms. The lower order coefficients have been tabulated by 

Makemson et al. (1961) and are given in Table 6„1. 

Table 601: Harmonic Coefficients of the Earth's 
Gravitational Potential 

J2 = +1082.28 • io"
6 

J3 - -2.30 • 10"6 

J4 = -2.12 • io-6 

J5 = -0.20 • io-6 

J6 = +1.00 • io"6 

Equation (6.8) is actually a simplification of the gravitational 

potential of the earth. When considering the departures from symmetry, 

there are two kinds of spherical harmonics: zonal harmonics (departures 

due to the ellipticity of the meridians), and tesseral harmonics (depar-

tures due to the ellipticity in latitudinal cross sections). Only 

zonal harmonics are considered in the above expansion. This is a stan-

dard model adopted in general perturbation techniques (see Escobal (1968) 

for a discussion of higher order models). 

Since we can express the governing equation as: 
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Figure 6.1 Depiction of the earth as a sequence of 
concentric mass shells 
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(6.10) 

This lays the foundation for considering the motion of a satellite with 

respect to an oblate spheriodal central body and under the influence 

of additional perturbative effects. 

6.2 Perturbative Forces and the Time Dependence of Orbital Elements 

A satellite, under the influence of a perfect inverse square force 

field law, would have a set of constant orbital elements: 

by differentiating equation (6.8) with respect to x, y, z and using 

equation (6.4) we have the equations of motion of a satellite with re-

spect to an oblate spheroidal central body (expressed to order J3): 
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devoid of any time dependence. However, due to perturbative forces, the 

orbital elements are acted upon leading to shifts or oscillations-

There are a number of effects which can be considered as perturbative 

forces: 

1. Aspherical gravitational potential 

2. Auxiliary bodies (e.g. sun, moon, planets) 

3. Atmospheric drag 

4„ Atmospheric lift 

5. Thrust 

6. Radiation Pressure (shortwave and longwave radiation) 

7. Galactic particle bombardment, e.g. protons (i.e. solar wind) 

8. Electromagnetic field asymmetry 

The most important of these effects on earth satellites is due to the 

first factor; the aspherical gravitational potential of the earth itself. 

Atmospheric drag becomes significant for the lower orbit satellites 

(heights less than 850 km). 

The aim of general perturbation theory is to develop closed ex-

pressions for the time dependence of the orbital elements. It has been 

shown that perturbations possess different characteristics (see Chapter 

10 of EB and Dubyago (1961) for a review): 

lo Secular variations 

2. Long term periodic variations 

3o Short term periodic variations 

In working with meteorological satellite orbits, we are primarily con-

cerned with non-oscillatory secular perturbations which cause ever 

increasing or decreasing changes of particular orbital elements away 

from their values at an epoch t as shown in Figure 6.20 
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Figure 6.2 Three principle types of orbital perturbations 

The aspherical gravitational potential of the earth primarily ef-

fects M, ft, and uj (where we understand that M, ft, and w without sub-

scripts are no longer constant). The other elements (a, e, i) undergo 

minor periodic variations about their mean values due to the aspherical 

gravitational potential, but in terms of meteorological satellite or-

bits, are not considered significant. In general, long period varia-

tions are caused by the continuous variance of to whereas short period 

variations are caused by linear combinations of variations in M and u. 

The general form of the equation of motion in a relative inertial 

coordinate system is given by: 

where subscript 1 indicates the earth, subscript 2 indicates the satel-

lite, the summation over m represents accelerations due to all auxiliary 
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bodies of mass nu (moon, sun, planets), and the bracketed term 

represents the difference in accelerations of the satellite and the 

earth created by non-vacuum properties of the surrounding environment 

(i.e., drag, lift, thrust, radiation pressure, protons, electromagnetic 

fields). If we tabulate the accelerations due to the non-vacuum 

properties: 

where; 
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S = sensitivity coefficient of satellite (includes the effect 

of the radiative characteristics of its exposed surfaces 

and its cross-sectional area and has units of area) 

W = total irradiance at satellite 

c = velocity of light 

C = empirical particle flux coefficient (dimensionless -
P 

the tilted arrow for the particle flux term PF (/) 

indicates that it is dominated by a point source of 

solar protons) 

(F + = unbalanced electromagnetic forces 

and note that the first term on the right hand side of equation (6.11) 

is given by equation (6.10), we can thus express the force field law, 

specifically for a satellite with respect to an oblate spheroidal 

earth, in a non-vacuum medium, and affected by the auxiliary bodies 

of the solar system., 

In terms of meteorological satellites we are generally considering 

nearly circular, free flying orbits with altitudes greater than 800 km. 

In addition, updated orbital parameters from the satellite agencies can 

be expected at a frequency of no greater than two weeks. Given these 

boundary conditions, most of the above perturbation terms can be ignored. 

The major perturbation e£fect, of course, is the non-sphericity of the 

earth and the resultant effect on the gravitational potential field. 
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The minor terms insofar as meteorological satellites are concerned, are 

the lunar effect, atmospheric drag, and solar radiation pressure. In 

general the minor terms need not be included in orbit propagations that 

take place over a one to two week period, if we consider the allowable 

error bars associated with satellite navigation requirements. That is 

to say, ignoring the effect of the minor perturbations does not lead 

to position or ephemeris errors significantly greater than the resolu-

tion of the data fields under analysis. 

It is important to note that the space agencies responsible for 

tracking satellites often include the minor terms in retrieving orbital 

elements. This is due to the fact that generalized orbit retrieval 

packages have been developed for the extensive variety of operational 

and experimental satellites, and missiles rather than retrieval pac-

kages individually tailored to specific types of satellites. The 

primary difficulty with treating the minor terms in a satellite navi-

gation model is that the required mathematics does not lend itself to 

streamlined analytic calculations, a principle requirement for pro-

cessing the vast amounts of data produced by most meteorological satel-

lite instruments. This is the principle reason for retaining only 

the major perturbation effect (asymmetric gravitational potential) 

which can be handled in a direct analytic fashion. 

Following EB, if we consider the potential of an aspherical earth 

(V ) with respect to the potential of a perfectly spherical earth 

(V ), where: P 
(6.12) 

(6.13) 
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then the difference in these two potentials can be said to define a 

perturbative function (R): 

(6.14) 

We can then say the potential Vp gives rise to perfect two body motion 

whereas the difference function R leads to perturbations about that 

motion. Using the definition for r and 6: 

(6.15) 

we can develop an explicit expression for the perturbative function. 

The following equation is then an expansion of R to order Ĵ l 

(6.16) 
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Brouwer and Clemence (1961) and Sterne (1960) have provided the 

analysis necessary to relate time derivatives of the orbital elements to 

derivatives in R. These expressions as given by EB are as follows: 

(6.17) 

It is now possible to partition the resultant derivatives into secular 

components, long period oscillatory components, and short period oscil-

latory components. 

If we ignore the oscillatory components (in a, e, and i) we can 

then develop secular perturbation expressions for any selected order 

of the gravitational potential expansion. It is this process, for 

satellite applications, which eliminates the time dependence in a, e, 

and i while including it in M, ft, and M, Next note that the time 

dependence of an arbitrary orbital element (x) can be expressed as 

a Taylor series expansion: 
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where xo is the initial value at an epoch tQ, and x> X> •••> a r e time 

derivatives. Now, if we ignore all but first order time derivatives 

and consider only the first order variations of the aspherical gravi-

tational potential (due to we can express the time dependence of 

M, ft, and a) in simple finite difference form with adequate accuracy: 

(6.20) 

(6.21) 

(6o22) 

(6.18) 

(6.19) 

• mo 

where M = n is defined as the Anomalistic Mean Motion and ft, u are the 

first derivatives of ft and o>. These expressions, derived in Chapter 10 

of EB, are given by: 

which are all functions of a, e, and i., It is important to note that 

as long as the latter 3 parameters remain nearly constant with time, it 

is not necessary to apply implicit numerical techniques to the solutions 

of equations (6.20), (6.21), and (6.22). However, a principal effect 

of atmospheric drag on low orbit satellites is to modify the values 

of a, e and i as a function of the eccentric anomaly. This is due to 

the fact that the essential effect of drag is to de-energize a satellite 
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orbit and thus reduce the dimension (semi-major axis) of the orbit 

ellipse. In addition, if the initial orbit is highly non-circular, the 

variation in the drag effect due to the elliptic path leads to modi-

fication of the orbit inclination. If a low-flying satellite (small 

period or high eccentricity) were being considered, time dependent ex-

pressions for the semi-major axis, eccentricity, and inclination should 

be included. EB provides a set of expressions for drag induced deri-

vatives of a, e, and i in Chapter 10 of his text, however, to include 

these expressions in an orbital solution would require a multiple step 

iterative approach to the calculation of the six derivative quantities. 

According to Fuchs (1980), with respect to the satellite navigation 

problem, drag induced perturbations need not be considered for meteoro-

logical satellites until orbital altitudes start falling below 850 km. 

With equation (6.20) we can define the Anomalistic Period (P): 

P = 2π/n (perifocus to varying perifocus) (6.23) 

Contrast this with the non-perturbative or mean period P: 

P = 2π/n (perifocus to non-varying perifocus) (6.24) 
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and the Anomalistic Period (P) and the Mean Anomaly (M) are given by: 

(6.26) 

(6.27) 

(6.28) 

Expanding to second order variations in potential results in terms 

of J2 and J4, where the Anomalistic Mean Motion n is given by:(see EB): 

(6.25) 

• • • The first derivative terms M, ft, and u) are given by: 
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(6.29) 

Note that the sign of the expression for dft/dt (see Equation (6.21)) 

indicates why orbits must retrograde to achieve a sun synchronous 

configuration (eastward precession of ascending node). Since dΩ/dt 

must be positive and the expression is of the form -[positive constant] 

•cosi, then the cosine of i must be negative. This requires i > 90. 
• • o 

It is worth comparing the first derivative terms (M, Ω, ω) for 

the first and second order expansions for both short period polar or-

biting satellites and longer period geosynchronous satellites. Using 

typical orbital data we can generate Table 6.2 from the computer routine 

given in Appendix B. 
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Table 6.2: Comparison of First Derivative Terms for First and 
Second Order Expansions (deg/day) 

First Order 
Polar Geosynchronous 

Second Order 
Polar Geosynchronous 

n 4985.237053 

M 4982.408922 

ft .990040 

u -2.666695 

357„564532 

357.577648 

-o013117 

.026234 

4985.237053 

4982.410662 

.993605 

-2.664593 

357.564532 

357.577648 

-.013115 

.026237 

6.3 Longitudinal Drift of a Geosynchronous Satellite 

We can now show that a geosynchronous satellite has a Ω term, 

even if the inclination and eccentricity are zero. Setting i = 0 and 

using a first order expansion: 

(6.30) 

3/2 2 Now since n = K/a and p = a(l - e ), and if we set e=0, and letting: 

then: 

(6.31) 

This gives rise to the so-called figure 8 orbit track of a geosynchronous 

satellite as shown in Figure 6.3. 
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(6.34) 

Figures 6.3 Figure 8 orbital track of a geosynchronous satellite 

6.4 Calculations Required for a Perturbed Orbit 

To calculate an orbital position vector, now that M, Ω, w are no 

longer constant requires 2 more steps than the analysis given in 

Chapter 5. Recalling that prior to orbit calculations we determined 

the time of perifocal passage (T): 

(6.32) 

we must now update ft and oi to time T since they are no longer constant 

parameters; we shall call these new initial terms io,j, and ΩT: 

(6.33) 

Finally, instead of considering the transformation matrix B (see 

Equation 5.59) as constant, we must calculate w and ft at the specified 

time t: 
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and then use these values to calculate the direction cosines for the 

transformation matrix B: 

(6.35) 

where: 

(6.36) 

This requirement slightly alters the run-time on a computer as shown in 

Table 6.3. 



101 

Table 6.3: Difference in Computational Time Between Non-Perturbed 
and Perturbed Orbit Calculations (times are given in 
relative units (RU) for a CDC-7600: 1 RU = .25 milli-
seconds of CPU time) 

No. of Vector Calculations 

1 

10 

50 

100 

Non-Perturbed 

lo00 

9.20 

44.00 

88.00 

Perturbed 

1.08 

10o00 

50.00 

100o00 

(6.37) 

(6.38) 

yielding two solutions E+ and E . By defining v+ and v according to 

Equation (6.37) we have placed the satellite at its equatorial crossing 

nodes. We can now solve for M+ and H : 

(6.39) 

and use the relationships between E and v: 

6.5 Equator Crossing Period 

There is another satellite period to be considered assuming varying 

orbital elements. This is the so-called synodic, nodal, or equator 

crossing period, which is very useful to operational tracking stations. 

The equator crossing period is most easily defined if we first let: 
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and since M = n(t - T), we can solve for the times of equator crossings: 

(6.40) 

The difficulty with the above approach is that over a half period, 

a) is varying, so that application of Equation (6.37) is only approximate. 

A rather simple solution to this problem is a numerical iterative 

approach in which two adjacent equator crossing nodes are found to a 

specified degree of accuracy. Appendix C provides a listing of a 

routine which will isolate a pair of equator crossings for a perturbed 

orbit. By applying the computer codes given in Appendices B and C, 

Table 6.4 is generated. This table compares the differences between 

the mean period, anomalistic period, and synodic period for both opera-

tional polar orbiter and geosynchronous satellites. Typical orbit data 

have been used in the calculations. 

Table 6.4: Comparison of Three Satellite Periods (minutes) 

Polar Geosynchronous 

Mean 103.987 1440.108 

Anomalistic (first order) 104.046 1440.055 

Synodic 104.102 1339.935 

(6.41) 

where + indicates a northward excursion and - indicates a southward 

excursion. Finally, the equator crossing period (P ) is given by: 
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Finally, to illustrate the application of a perturbed model, 

Figures 6U4 and 6.5 are provided. These figures portray typical orbital 

paths of both a geosynchronous satellite (GOES-3) and a polar orbiting 

satellite (TIROS-N). 

Figure 6.4 Typical orbital path of a geosynchronous 
satellite (GOES-3) 
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Figure 6.5 Typical orbital path of a polar orbiting 
satellite (TIROS-N) 
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6.6 Required Inclination for a Sun-Synchronous Orbit 

Another problem which we can address, is the determination of 

the required inclination angle for sun synchronous orbits for a given 

orbital period (P). This is simply a matter of requiring ft to be 360 

degrees per mean solar year. Now since: 

(6.42) 

(6.43) 

(6,44) 

(6.45) 

We simply require that i satisfies: 

or: (6.46) 
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This equation is easily solved numerically. Since the right hand 

side of equation (6.46) is monotonically increasing as i goes from 90° 

to 180°, we can use a Newton's method approach in the interval (90° <_ 

i _< 180°) to isolate, to a specified tolerance, a solution matching the 

left hand side. By applying this procedure, Table 6.5 has been generated 

which gives the required satellite height and inclination for a sun 

synchronous orbit, given the satellite period. A circular orbit (e=:0) 

is assumed. A listing of a computer routine is given in Appendix G. 

Table 6.5: Required Orbital Inclination for a Sun Synchronous 
Satellite Given a Satellite Period (e=0) 

Period (minutes) Height (km) Inclination (Deg) 

90 274.36 96.5893 

100 758.44 98.4366 

110 1226.62 100.5585 

120 1680.80 102.9718 

6.7 Velocity of a Satellite in a Secularly Perturbed Elliptic Orbit: 

A final problem we might want to solve is the determination of the 

velocity V of a satellite in an elliptic orbit at time t. Since we 

know: 

Note that a is assumed to be in cannonical units: 

(6.47) 
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and thus: 

and since V is simply: 

then: 

(6.48) 

(6.49) 

(6.50) 

(6.51) 

(6.52) 

(6.53) 

and if we ignore the perturbation term then M = n, and we have a velocity 

expression for a circular, non-perturbed orbit: 

Note immediately that for a circular orbit where e=0: 

and since if e=0 then E=M, thus: 

Now since: 

(6.54) 

(6.55) 
Now note that since: 
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then: 

(6.56) 

which is similar to Equation 5.30, an expression that is independent of 

time. 

In the case e = 0, we consider the perturbative effects: 

using: 

(5.57) 

(6.58) 

where: 

and: 

(5.59) 

(6.60) 

Thus we have solved for V as a function of time, knowing only the orbital 

elements. 



7.0 THE ORBITAL REVISIT PROBLEM 

7.1 Sun Synchronous Orbits 

Does a satellite pass over the same point on each orbit if it is 

sun synchronous? It would, only if the equator crossing separation 

is an integer factor of 360°. For example: 

1. Assume a 60 minute period. After 1 orbit period, the earth 

would rotate 15° underneath the satellite. This would continue 24 times 

until the satellite was back to exactly the same point that it started. 

2. Assume a 120 minute period. In this instance, there would be 

a 30° equator crossing separation. Therefore since 360/30 = 12 is 

an exact integer, the satellite would return to the same point. 

Tables 7.1 and 7.2 are useful. 

Table 7.1: Orbit Crossing Separations up to 90° 

Period 

20 min 

40 min 

60 min 

80 min 

120 min 

160 min 

180 min 

240 min 

360 min 

Longitudinal Separation 

x 15 /60 min = which divides 360 

10 

15 

20 

30c 

40l 

45 

60 

90 

Integer Number 
of Orbits 

72 times 

36 times 

24 times 

18 times 

12 times 

9 times 

8 times 

6 times 

4 times 

109 
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Table 7.2: Complete Table for Orbit Crossing Separations 
with 1 to 6 Hour Periods. 

Period Longitudinal Separation 
Integer Number 
of Orbits 

60.0 min x 15 /60 min = 

62.60870 min 

65.45455 min 

68.57143 min 

72.0 min 

75.78947 min 

80.0 min 

84.70588 min 

90.0 min 

96.0 min 

102.85714 min 

110.76923 min 

120.0 min 

130.90909 min 

144.0 min 

160.0 min 

180.0 min 

205.71429 min 

240.0 min 

288.0 min 

360.0 min 

15.0 

15.65217° 

16.34364° 

17.14286C 

18.0° 

18.94737° 

20.0° 

21.17647° 

22.5° 

24.0° 

25.71429° 

27.69231° 

30.0° 

32.72727° 

36.0° 

40.0° 

45.0° 

51.42857° 

60.0° 

72.0° 

90.0° 

which divides 360 24 times 

23 times 

22 times 

21 times 

20 times 

19 times 

18 times 

17 times 

16 times 

15 times 

14 times 

13 times 

12 times 

11 times 

10 times 

9 times 

8 times 

7 times 

6 times 

5 times 

4 times 
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3. Now consider a period which results in a longitudinal separation 

which does not divide 360° an integer number of times, such as 100 min-

utes. Then 100 x 0.25 = 25 degree longitudinal crossing, which divides 

360° exactly 14.4 times. If we let the first crossing occur at 0° 

longitude (Greenwich Meridian), Table 7.3 gives the equatorial cros-

sing sequence. 

Table 7.3: Equator Crossings for a Non-Integer Separation Factor 

Orbit Number Equatorial Crossing Longitude 

0 0° 

1 25°W 

2 50°W 

CYCLE 1 

CYCLE 2 

CYCLE 3 

CYCLE 4 

CYCLE 5 

3 75°W 

• I 

13 325°W (35°E) 

14 350°W (10°E) 

15 15°W 

16 40°W 

• a 
• • 
• • 

27 315°W (45°E) 

28 340°W (20°E) 

29 5°W 

42 330 W (30 E) 

43 355°W (5°E) 

44 20°W 

57 345°W (15°E) 

58 io°W 

72 
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Note that It takes 5 complete orbital cycles or 72 orbital periods 

until the pattern repeats. It is easy to see why this gets more com-

plicated if the period is something like 101.358 minutes. Basically, to 

determine how many cycles are required to repeat the sequence, the 

smallest integer (I) must be found such that: 

I x P(period) = another integer 

Thus, in order to find I: 

1. Calculate the orbits per cycle (N): 

N = 360/(0.25P) where the period(P) is in minutes. 

2. Now N is given by: 

N = n,n„n_n.... 1 2 3 4 
Take the decimal portion and divide it by a power of 10 

corresponding to the number of places in the decimal portion 

at a preferred decimal accuracy. 

3. Simplify that fraction to its least common denominator (LCD). 

4. The LCD is the smallest integer I. Example: 

Assume an orbit of 110 minutes. How many cycles and orbits 
• i. 

must pass before the orbit pattern repeats itself? 

N = 360/(0.25 • 110) = 13.09090909..= 

Let us make our calculation accurate to 4 decimal places, 

thus: 
N = 13.0909 

Take the decimal portion 0909 and divide it by 10,000, 
9 

yielding 909/10,000. Since any power of ten (10 ) can be 

given as the multiples of its prime factors, i.e., 

109 = 59 • 29, then the numerator 909 would have to be 
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divisible by 5 or 2 to have a lower least common denominator. 

Thus, in this case, 10,000 is the LCD because 909 is not 

divisible by 2 or 5. Therefore, it would take 10,000 cycles 

or 130,909 orbits for the orbit pattern to repeat itself to 

within 4 decimal place accuracy. 

Also note that even though the orbit pattern of a sun-synchronous 

satellite does not repeat every cycle, this does not make it any less 

sun-synchronous. It simply pseudo-randomizes the equator crossings. 

Actually, there is a predictable phase pattern to the equator crossing 

changes although it can be considered as a randomizing process. 

7.2 Multiple Satellite System: Mixed Sun-Synchronous and Non-Sun-
Synchronous Orbits 

In order to achieve uniform spatial and temporal sampling, future 

satellite systems will include various sun-synchronous and non-sun-

synchronous satellites. The basic problem is to design an orbit con-

figuration which will yield an optimal revisit frequency over all parts 

of the globe. Since the topic of diurnal variability has become such 

an important consideration in radiation budget studies, future satellite 

systems cannot afford to provide only twice a day coverage of the globe. 

The most successful technique which has been used to design the orbit 

architecture for a multiple satellite system is the computer simulation 

of multiple satellite orbits. By "flying satellites" in a computer, 

the revisit frequencies for a global spatial grid can be computed for 

a variety of orbital parameters. Campbell and Vonder Haar (1978) used 

this approach for the specification of the optimal orbit inclination 

for a system of polar-orbiting satellites designed to measure the 

earth's radiation budget. Circular orbits were used in their analysis. 
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It should be recognized that when considering polar orbiting 

satellites, an analysis of the revisit problem must include not only 

the orbital period but also the scanning pattern of the satellite in-

strument. As the satellite height increases, the period increases and 

thus the longitudinal separation of equator crossings increases. A 

fixed nadir viewing instrument would miss global strips (swaths) to 

the east and west of the orbital track as the satellite height is in-

creased. If a satellite instrument is designed to scan across the 

orbital track, the longitudinal separation can be increased up to the 

point at which the atmospheric path length would have to be considered. 

Essentially, the solution of the orbital revisit problem should 

be an attempt to sample the three dimensional volume: latitude, longi-

tude and local time. Polar orbiters with inclinations near 90° would 

sample all latitudes and longitudes in a time period of approximately 

one month. However, only a very narrow local time interval would be 

sampled because of the slow precession rates. Satellites with lower 

inclination orbits such as 30°, would precess rapidly (about 5° per 

day) for an 800 Km altitude orbit, sampling 12 hours in a month. Com-

puter simulations indicate that a set of satellites at 80° and 50°, 

and 80°, 60°, and 50° inclinations would provide nearly optimum sampling 

for two and three low orbit satellite systems, respectively (see 

Campbell and Vonder Haar, 1978). The geosynchronous satellites are 

examples of satellite platforms which provide fixed spatial and angular 

sampling but can provide high temporal sampling. 

Another factor which must be included in the analysis is the quan-

tity which is being measured. For observations of emitted flux, obser-

vations at any time of day generally provide good results. However, 
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when considering albedo measurements, observations at night are useless 

and observations near sunrise or sunset (local times 600 and 1800) are 

very difficult to analyze because of the high solar grazing angles. 

Any variation of the observed field must also be considered in the 

orbital design. For radiation budget purposes, a set of 80°, 50° and 

sun-synchronous satellites is better than an 80-60-50 set. The 

sun-synchronous orbit should be located at some local time between 900 

and 1500 so as to provide uniform quality albedo estimates. The 

drifting orbiters are able to measure the diurnal variations. There 

are, of course, additional requirements for which orbits at other times 

of the day might be more useful. For example, in order to observe the 

earth's surface, an orbit at 8:00 am local time might be best since 

there are generally fewer clouds to obscure the ground. 



8.0 CONCLUSIONS 

This investigation has been directed toward the study of the orbit 

properties of near earth meteorological satellites, and in particular, 

the application of the results to the satellite navigation problem. 

Beginning with some basic definitions of time and coordinate systems, 

the basic foundation for the solution of the two body Keplerian orbit 

was outlined. This solution was adapted to the conventional orbital 

element parameters available from the meteorological satellite agencies 

so as to develop computer models for calculating orbital position vec-

tors as a function of time. This is a fundamental requirement for any 

analytic satellite navigation model. 

The invariant two body solution was then extended to a perturbed 

solution in which the time variant nature of an orbit was considered. 

Using a formulation called the perturbation function, derived from a 

harmonic expansion of the earth's gravitational potential, a set of 

closed form time derivatives of particular orbital elements were 

examined. From these definitions, it was possible to examine various 

orbital characteristics of near earth satellites. 

Next, a discussion of the orbit revisit problem was provided as 

a means to highlight the significance of exact computer solutions to 

the orbital properties of meteorological satellites. Finally, a set 

of computer codes for calculating orbital position vectors and various 

orbital period quantities is provided in the appendices. The input to 

these routines is based on the "Classical Orbital Elements" available 

from the operational satellite agencies. A brief description of the 

source of these elements is provided in Appendix A. 
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APPENDIX A 

EXAMPLES OF NESS, NASA, ESA, AND NASDA ORBITAL ELEMENT TRANSMISSIONS 

Classical Orbital Elements for meteorological satellites are, in 

general, provided by the operational satellite agencies, i.e., NESS, 

NASA, ESA, and NASDA. Although actual satellite tracking data may be 

provided by other agencies such as the North American Air Defense Com-

mand (NORAD), the reduction of this data to the conventional elements 

is under the management of the operational space agencies. Before 

providing examples of orbital element transmissions for various satel-

lites from these agencies, a brief explanation of the format is re-

quired. As discussed in Chapters 5 and 6, the standard elements include: 

1. Epoch Time (t ) 

2. Semi-major Axis (a) 

3. Eccentricity (e) 

4. Inclination (i) 

5. Mean Anomaly or True Anomaly ( Mq or v ) 

6. Right Ascension of Ascending Node (fiQ) 

7. Argument of Perigee (l>q) 

In the discussion of Chapters 5 and 6, these elements were referred to 

as "Classical Orbital Elements" although in actuality, the space agen-

cies refer to the above set of elements by other names. The three 

basic categories of orbital elements that appear on standard orbital 

transmission documents are as follows: 

1. Keplerian Elements 

2. Osculating Elements 

3. Brouwer Mean Elements 
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There are no differences in the definitions of the classical 

elements insofar as the above categories are concerned, however, there 

are differences in the time varying properties of orbital elements with 

respect to the three categories. Referring to the Orbital Elements 

as Keplerian, implies that pure unperturbed two body motion is under 

consideration. Referring to the Classical Elements as Brouwer Mean 

Elements implies that time derivatives are involved with respect to 

various elements and that the elements themselves are based on Brouwer 

theory (see Brouwer and Clemence, 1961) or Brouwer-Lyddane theory 

(see Cappellari et al., 1976). Keplerian or Brouwer Mean elements are 

the standard products of the operational space agencies. The model 

developed in Chapters 5 and 6 incorporates the basic physics considered 

in Brouwer or Brouwer-Lyddane theory but uses a different formulation, 

see Kozai (1959) or EB (1965). 

Referring to a set of elements as Osculating Elements can lead to 

some confusion. We say, in general, that an orbit osculates (kisses) 

an instantaneous position and velocity vector. In this sense, various 

sets of elements compatible with the various orders of perturbation 

theory could propogate an orbit which kisses or osculates a pre-defined 

position-velocity constraint which is known to define an orbit. When 

the space agencies label a set of orbital elements as osculating, they 

are indicating that the elements used in a Keplerian theory will os-

culate a position-velocity constraint which could have been based on 

two-body theory or perhaps a perturbation theory applied to raw trac-

king data used to generate the ephemeris constraint. Therefore os-

culating elements can be considered as Keplerian elements, although the 

elements themselves may represent a fit to ephemeris data based on any 

number of perturbation models. 
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The above points may seem academic in terms of reducing tracking 

station data to a set of orbital elements, however, the distinction is 

very important. It is instructive to discuss this statement by example. 

We will consider the approaches used by NESS and NASA in their genera-

tion of orbital elements for TIROS-N, GOES, and Nimbus-7 satellites. 

TIROS-N, which is a NESS operated polar orbiting satellite, is radar 

tracked by NORAD. In addition, NORAD reduces approximately a week of 

tracking data to a set of orbital elements which are compatible with 

the NORAD perturbation model (the model itself is classified). Pertur-

bation factors included in this model include zonal and meridional 

asymmetries in the earth's gravitational potential, lunar forces, at-

mospheric drag, and solar radiation pressure. The retrieved orbit ele-

ments are then used to propogate approximately 3 weeks of ephemeris 

data which are transmitted to NESS, who in turn, retrieves either 

Keplerian Elements or Brouwer Mean Elements based on unperturbed two 

body theory or Brouwer-Lyddane theory. The orbit retrieval package is 

based on sub-systems of the NASA Goddard Trajectory Determination Sys-

tem (GTDS) which is a large computer package designed for a vast array 

of NASA orbital problems, and is developed and maintained by the NASA 

Goddard Space Flight Center. Therefore, NESS can provide either un-

perturbed or perturbed model elements, but it must be recognized that 

these elements represent fits to model produced ephemeris data, not 

raw tracking data (see Ellickson, 1980). 

The retrieval of GOES-East and GOES-West orbital elements takes 

place at both NESS and NASA. The NESS produced elements are based on 

approximately one week of tri-lateration (3 station) ranging data 

generated by the 5 NOAA operated tracking stations (Wallops Island, VA; 
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Seattle, WA; Honolulu, HI; Santiago, Chile; Ascension Island). The 

type of model used to fit the ranging data is based on unperturbed 

two-body motion, so by definition, the NESS produced orbital elements 

for GOES are Keplerian, NASA, on the other hand, bases its orbit re-

trievals on range and range-rate data available from its own global 

network of tracking stations. Unlike NESS, NASA uses the GTDS per-

turbation model to retrieve orbital elements which are then used to 

propogate an ephemeris stream. These model data are finally fit by a 

Keplerian model to produce a set of elements which osculate a position-

velocity vector pair which best characterizes a two body orbit. NASA 

then transmits these elements under the heading of Osculating Elements, 

although it is understood that they are Keplerian Elements, NASA 

uses a very similar procedure for producing Nimbus-7 orbital elements, 

however, the elements derived from the model ephemeris stream are 

Brouwer Mean Elements based on Brouwer-Lyddane theory. 

The following ten cases are examples of various orbital trans-

mission documents from four operational space agencies (NASA, NESS, ESA, 

JMS) for the following seven different satellites: 

1. GOES-2 (Eastern Geosynchronous) 

2o GOES-3 (Western Geosynchronous) 

3. GOES-1 (Indian Ocean Geosynchronous, also called GOES-A) 

4. METEOSAT (European Geosynchronous) 

5. GMS (Japanese Geosynchronous) 

6. TIROS-N (NESS Polar Orbiter) 

7. NIMBUS-G (NASA Polar Orbiter) 
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CASE 1: GOES-2: NASA Transmission 
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Case 2; GOES-2; NESS Transmission 
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Case 3: GOES-3; NASA Transmission 

Case 4: GOES-3: NESS Transmission 
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Case 5: GOES-1; NASA Transmission 
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Case 6: GOES-1: ESA Transmission 
(During the FIRst GARP Global 
Experiment - FGGE) 
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Case 7: METEPSAT: ESA Transmission 
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Case 8: GMS: NASDA produced elements transcribed 
onto GMS data tapes and decoded by 
the McIDAS system at the University 
of Wisconsin's Space Science and 
Engineering Center. 

Case 9: TIROS-N: NESS Transmission 
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Case 10: NIMBUS-G: NASA Transmission 
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(PERTURBED TWO BODY) 
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APPENDIX B 

COMPUTER SOLUTION FOR AN EARTH SATELLITE ORBIT 
(PERTURBED TWO BODY) 
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APPENDIX C 

COMPUTER SOLUTION FOR FINDING A SYNODIC PERIOD 
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APPENDIX C 

COMPUTER SOLUTION FOR FINDING A SYNODIC PERIOD 
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APPENDIX D 

COMPUTER SOLUTION FOR A SOLAR ORBIT 
(PERTURBED TWO BODY) 
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APPENDIX D 

COMPUTER SOLUTION FOR A SOLAR ORBIT (PERTURBED TWO BODY) 
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APPENDIX E 

COMPUTER SOLUTIONS FOR A SOLAR ORBIT 
(APPROXIMATE AND NON-LINEAR REGRESSION) 
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APPENDIX E 

COMPUTER SOLUTIONS FOR A SOLAR ORBIT 
(APPROXIMATE AND NON-LINEAR REGRESSION) 
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APPENDIX F 

LIBRARY ROUTINES FOR ORBITAL SOFTWARE 
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APPENDIX F 

LIBRARY ROUTINES FOR ORBIT SOFTWARE 
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APPENDIX G 

COMPUTER ROUTINE FOR DETERMINING THE INCLINATION 
REQUIRED FOR A SUN-SYNCHRONOUS ORBIT 
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APPENDIX G 

COMPUTER ROUTINE FOR DETERMINING THE INCLINATION REQUIRED 
FOR A SUN-SYNCHRONOUS ORBIT 
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