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ABSTRACT

An analysis is carried out which considers the relationship of
orbit mechanics to the satellite navigation problem, in particular,
meteorological satellites. A preliminary discussion is provided which
characterizes the distinction between "classical navigation" and
"satellite navigation'" which is a process of determining the space
time coordinates of data fields provided by sensing instruments on
meteorological satellites. Since it is the latter process under con-
sideration, the investigation is orientated toward practical appli-
cations of orbit mechanics to aid the development of analytic solu-
tions of satellite orbits.

Using the invariant two body Keplerian orbit as the basis of
discussion, an analytic approach used to model the orbital char-
acteristics of near earth satellites is given. First the basic con-
cepts involved with satellite navigation and orbit mechanics are
defined. 1In addition, the various measures of time and coordinate
geometry are reviewed. The two body problem is then examined be-
ginning with the fundamental governing equations, i.e. the inverse
square force field law. After a discussion of the mathematical and
physical nature of this equation, the Classical Orbital Elements used
to define an elliptic orbit are described. The mathematical analysis
of a procedure used to calculate celestial position vectors of a
satellite is then outlined. It is shown that a transformation of
Kepler's time equation (for an elliptic orbit) to an expansion in

powers of eccentricity removes the need for numerical approximation.
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The Keplerian solutien is then extended to a perturbed solution,
which considers first order. time derivatives of the elements defining
the orbital plane. Using a formulation called the gravitational per-
turbation function, the form of a time variant perturbed two body orbit
is examined. Various characteristics of a perturbed orbit are analyzed
including definitions of the three conventional orbital periods, the
nature of a sun-synchronous satellite, and the velocity of a non-
circular orbit.

Finally, a discussion of the orbital revisit problem is provided
to highlight the need to develop efficient, relatively exact, analytic
solutions of meteorological satellite orbits. As an example, the
architectural design of a satellite system to measure the global radia-
tion budget without deficiencies in the space time sampling procedure
is shown to be a simulation problem based on "computer flown' satel-

lites. A set of computer models are provided in the appendices.
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1.0 INTRODUCTION

The topic of this investigation is orbital mechanics and its
relationship to the satellite navigation problem. Since the term
“"satellite navigation" denotes a variety of concepts, it is important
to refine a definition for purposes of this study. We say, in general,
that satellite navigation is a process of identifying the space and
time coordinateé of satellite data products (in this case meteorologi-
cal satellites). Note that this characterization departs somewhat from
the classical usage of navigation which implies the definition and
maneuvering of the position of ships, aircraft, satellites, etc. A
more exact definition is given in Chapter 2. A fundamental component
of any satellite navigation system is a model of the satellite's orbit-
al properties. This investigation is primarily concerned with the
mathematical and physical nature of near earth meteorological satellite
orbits and thus meteorological satellite navigation requirements. The
study also considers the basic nature of coordinate systems and the
various measures of time.

There are two very general orbital application areas insofar as
meteorological satellites are concerned. The first and more traditional
application of orbital analysis is the process of tracking the position
and motion of satellites, by the space agencies, so as to provide ephem—
eris and antenna pointing information to ground readout stations and
operations command facilities. Considering that in this process, the
actual characteristics of an orbital plane are defined, this can be
referred to as a navigation process. However, for our purposes, we

shall consider this process as an "orbital tracking" problem.



The second application is the analytic treatment of orbital motion
in a model designed for processing the meteorological data, generated
by spacecraft instrumentation. In this case, there are very different
computational and operational restraints tham in the case of orbit
tracking. Primarily we are concerned with developing efficient and
quick computational routines that retain a relatively high degree of
orbital position'accuracy, but are not bogged down with the multiplicity
of external forces that orbit tracking models must consider.

The practical outcome of the study is a set of orbital computer
models, which are adaptable in a very general fashion, to a variety of
analytic near-earth satellite navigation systems. The usability of
these models is insured because they are based on the conventional or-
bital elements available from the primary meteorological satellite
agencies, i.e. the National Envirommental Satellite Service (NESS), the
National Aeronautical Space Administration (NASA), the European Space
Agency (ESA), and the National Space Development Agency (NASDA) of
Japan, The reader may refer to Appendix A for an explanation.

Meteorological satellites, whether they are of the experimental or
operational type, are classified as either geosynchronous (= 24 hour
period) or polar low orbiter (= 100 minute period) by the above agencies.
The low orbiters may be placed in either sun-synchronous or non-sun-
synchronous orbit. All of these satellites are in nearly circular orbit,
and in general, are at altitudes at which atmospheric drag is not a
significant factor over the prediction time scale under consideration
(= 1-2 weeks). This investigation will be addressed to these types of

orbits.



Chapter 2.0 considers some basic concepts which are crucial to an
understanding of the satellite navigation problem. Chapter 3.0 provides
a set of definitions and an explanation of the various measures of time.
A discussion of station coordinates (latitude) is given in Chapter 4.0
along with some fundamental geometric definitions. Chapter 5.0 repre-
sents the major portion of the analysis, that is, a discussion of the
two body orbit ﬁroblem and a method to calculate orbital position vec-
tors given a set of "Classical Orbital Elements". Chapter 6.0 considers
the time varying properties of an orbit and goes on to look at the
resultant effects of the aspherical gravitational potential of the earth
on the orbital characteristics of a satellite. The topic of the orbital
revisit problem is considered in Chapter 7.0. Finally, appendices are
included which provide a set of computer models which can be used to
calculate orbital position vectors and the various orbitaliperiods
which are discussed in the chapter on perturbation theory.

A principle reference used in this analysis is the very fine com-
pendium on Orbit Mechanics by Pedro Ramon Escobal (1965), hereafter EB.
This work stands alone as an aid to solving orbital mechanics problems
faced by satellite workers and scientists. Other very helpful ref-
erences used in this study were The Handbook on Practical Navigation by
Bowditch (1962) and a translation of a Russian text on orbit determina-
tion by Dubyago (1961). The latter work provides a very interesting
historical sketch of the development of orbital mechanics and man's

understanding of the motion of celestial bodies.



2.0 BASIC CONCEPTS
2.1 Orbit Mechanics and Satellite Navigation

The following definitions are essential to an understanding of the
ensuing analysis:

Orbital Mechanics: A branch of celestial mechanics concerned with

orbital motions of celestial bodies or artificial spacecraft.

Celestial Mechanics: The calculation of motions of celestial bodies

under the action of their mutual gravitational attractions.

Astrodvnamics: The practical application of celestial mechanics,

astroballistics, propulsion theory, and allied fields to the problem of

planning and difecting the trajectories of space vehicles.

Navigation (General): The process of directing the movement of a

craft so that it will reach its intended destination: subprocesses are
position fixing, dead reckoning, pilotage, and homing.

Navigation (Satellite): The process of determining a set of unique

transformations between the coordinates of satellite data points in a

satellite frame of reference and their associated terrestrial or plane-
tary coordinates. (This definition should be contrasted with "Satellite
Image Alignment", which is a non-analytic, mostly subjective process in
which the two or more images to be aligned often have different aspect
ratio characteristics.)
The major areas of Orbital Mechanics are:
1. Satellite Orbit Injection
a. Thrust (Ballistic, Propulsion) forces
b. Drag forces

c. Lift forces



2. Determination of Orbital Elements
a. Position vector, velocity vector, and initial time
(?, }’, to)
b. Two position vectors and times (;l’ tl’ ?2, t2)
¢. Three pairs of azimuth~elevation angles and times
[0, Bys £))s (955 Hy, £5), (85, Hys ty)]
d. Slant-range, range-rate, and time observations
[(4;, &1, £, (dy, éz, ty)...]
e. Mixed observations (angles, ranges, range-rates, times)
3. Orbital Properties and Tracks
a. Orbital elements
b. Velocities and periods
¢. Position vectors
d. Direct and retrograde orbits
e. Equator crossing data
f. Orbital revisit frequencies
4, Orbital Analytics (Keplermanship)
a. Nodal passages
b. Satellite rise and set times
¢c. Line of sight periods and eclipses
d. Orbital architecture
The ensuing analysis will be primarily concerned with the topics
outlined in parts 3 and 4. Since meteorological satellite navigation
methods are generally not affected by how satellites are placed in
orbit nor how the various space agencies track these satellites so as
to produce orbital elements (other than the associated errors), we will

put aside any further discussion of parts 1 and 2, and instead concen-

trate on the material outlined in parts 3 and 4.



2.2 Satellite Navigation Modeling

Satellite navigation modeling can be considered to be a five
part problem:

1. The time dependent determination of the spacecraft orbital
position in an inertial coordinate system.

2, The time dependent determination of the spacecraft orien-

tation (attitude) in an inertial coordinate system.
3. The specification or determination (time dependent) of the

optical paths of the imaging or sounding instrument with respect to

the spacecraft.
4. The integration of the above static and dynamic aspects of the

spacecraft into a model which can provide measurement pointing vectors

in the inertial frame of reference.

5. The transformation of the inertial pointing vectors to pointing
vectors in the preferred (mon-inertial) coordinate system.

The first requirement of an analytic navigation techmique is a
model which can solve for satellite position at any specified time. In
fact, the determination of spacecraft orientation is absolutely depen-
dent on knowledge of satellite position if ground based or star based
attitude determination techniques are applied. A discussion of this
topic can be found in Smith and Phillips (1972) and is presently being
extended by Phillips (1979). With the knowledge of spacecraft position
and orientation, the dynamics of the actual on-~board imstrumentation can
then be considered. Finally, upon integration of these three dynamic as-
pects of an orbiting satellite into an appropriate model, pointing vec-
tors can be obtained which f£ix the relationship between an instrument

field-of-view and a terrestrial coordinate (latitude, longitude, height).



2.3 Satellite Orientation

It is important to distinguish between the effect of varying
satellite position and varying satellite orientation on the apparent
earth scene. First of all it is instructive to define the various terms
associated with satellite orientation:

Attitude: Orientation of the principal axis of a spacecraft, e.g.
the spin axis, with respect to the principal axis (spin axis) of the
earth, usually given in terms of declination and right ascension with
respect to a celestial frame of reference.

Precession: The angular velocity of the axis of spin of a spin-
ning rigid body, which arises as a result of steady uneven external
torques acting on the body.

Nutation: A high frequency spiral, bobbing, or jittering motion
of a spinning rigid body, about a mean principal axis, due to asymmetric
weight distribution or short period torque modulation.

Wobble: An irregular vacillation of a body about its mean prin-
cipal axis due to non-solid body characteristics.

Figure 2.1 has been provided to illustrate these definitions.

s PRECESSION

PRINCIPAL AXIS
OF EARTH <« NUTATION

PRINCIPAL AXIS
OF SPACECRAFT —

wd WOBBLE

Figure 2.1 Dynamics of Satellite Orientation



Variation in the orientation of a meteorological satellite can
lead to both translations and rotations of earth fields with respect
to a fixed satellite field-of-view. These apparent motions are super-
imposed on real motions due to variation in the orbital position. A
requirement of any satellite navigation model is the inclusion of pro-
cedures to separate the apparent motions from the real motions which
are essentially independent processes. Therefore, this investigation
will be devoted to the determination of orbital position as these cal-
culations generally preface the determination of the remaining navi-

gational parameters.

2.4 Applications of a Satellite Navigation Model

Finally, an important question concerning satellite navigation is:
"What does a navigation model provide?" Essentially, it provides the
following three capabilities:

1. The capability of placing grid and/or geographic-topographic
annotation information in or on the data. This process should be called
a "Gridding" process.

2. A means to specify the terrestrial or planetary coordinate of
a given data point coordinate, or conversely, to specify the data point
coordinate corresponding to a given terrestrial or planetary coordinate.
This process should be called a "Navigational Interrogation" process.

3. A framework for transforming the raw satellite imagery into
alternate cartographic (map) projections. The actual process of re-
organizing the raw data into a new projection should be called a "Map-

ping" process.



Note the actual navigation process only involves specifying,
calculating, or determining the appropriate parameters inherent to the
navigation model and utilizing them to calculate coordinate transfor-

mations,



3.0 TIME
3.1 Basic Systems of Time

Any navigational process, by its very nature, involves various
systems of time. Therefore, we need the following definitions:

Mean Solar Time (MST): Time that has the mean solar second as its

unit and is based on the mean sun's motion. One mean solar second is
1/86,400 of a mean solar day. One solar day is 24 hours of mean solar
time.

Greenwich Mean Time (GMT): Mean solar time at the meridian of

Greenwich, England. Also referred to as Universal Time (UT0), Zulu

Time, Z~Time, or Greenwich Civil Time:

GMT = MST + n (3.1)

where n is the number of time zones to the west of the Greenwich meri-
dian as shown in Figure 3.1. There are also higher order systems of
Universal Time (UT1l, UT2) which are corrected for variations in the
earth's rotational rate due to secular, irregular, periodic seasonal and
periodic tidal terms and polar motion due to solar and lunar gravita-
tional effects on the earth's equatorial bulge. These corrections are

not significant for the time periods we are considering.
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Figure 3.1 Time Zones
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Ephemeris Time (ET): A uniform measure of time defined by laws

of dynamics and determined in principle from the orbital motions of the
planets, particularly of the earth. One ephemeris second (ISU:1960) is
1/31556925.9747 of a tropical year defined by the mean motion of the sun
in longitude at the epoch 1900, January 0, 12 hours (12:00 GMT, Dec. 31,
1899). An ephemeris day is 86,400 ephemeris seconds. The earth's rota-
tion suffers periodic and secular variations in rotation so that ephem-

eris time is defined by:
ET = GMT + At (3.2)

where At is an annual increment tabulated in the American Ephemeris and
Nautical Almanac. For instance, using values from the American

Ephemeris and Nautical Almanac (1978), Table 3.1 is generated:

Table 3.1: Ephemeris Time Correction Increments

Year At
1956.5 31.52
1957.5 31.92
1958.5 32.45
1959.5 32,91
1960.5 33.39
1961.5 33.80
1962.5 34,23
1963.5 34.73
1964.5 35.40
1965.5 36.14

Note that At can not be calculated in advance. It is determined from
observed and predicted positions of the moon.
It is also worth noting that the change in the time increment

from year to year is fairly insignificant. The result of this



12

characteristié of ephemeris time, is that short term orbital predictions

(= 5 years) can effectively ignore ephemeris corrections. Although this

may simplify operational satellite orbit prediction, incremental cor-
rection must be included when considering long term orbital calculations

such as historical earth-sun configurations. Table 3.2 represents a !
listing of incremental corrections from the American Nautical and

Ephemeris Almanac (1978).

Atomic Time (AT): A measure of time based on the oscillations of
the U.S. Cesium Frequency Standard (National Bureau of Standards,
Boulder, Colorado). The standard is based on the U.S. Naval Obser-
vatory's suggested value of 9,192,631,770 oscillations per second of
the cesium atom - isotope 133. The reference epoch has been defined
as January 1, 1958 OhOmOS GMi. The standard time scale to which U.S,
orbital tracking stations are synchronized is the Universal Time
Coordinated (UTC) system. This system is derived from an atomic time
scale. Prior to 1972 the UTC system operated at a frequency offset
from the AT system. Since January 1, 1972 the UTC system is derived
from a rubidium atomic frequency standard. The new measurements used
to convert to UTC come from various global stations and are thus re-
ferred to as Station Time (ST).

Tropical Year: Period of one revolution of the earth measured

between two vernal equinoxes. Equal to 365.24219879 mean solar days
or 365 days, 5 hours, 48 minutes, 46 seconds or 31,556,925.9747 ephem-
eris seconds. Also referred to as an Astronomical Year, Equinoctial

Year, Natural Year or Solar Year.

Anomalistic Year: Period of one revolution of the earth measured

between perhelion to perhelion (see Figure 3.2). Equal to 365.259641204



Table 3.2:
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Ephemeris Time Correction Table (From the 1978
American Ephemeris and Nautical Almanac)

(OP*;}%) AT(A) AUT1 (OP'{}PD AT(A) AUT1 (01,?*{}%) AT(A) AUT!
1956 s s 1964 s s 1972 s s
Jan. 1 +31.34 -0.08 Apr. 1 +35.22 ~0.05 Jan. 1 +42.22 -0.04
Jan. 4 31.34 - .08 July 1 35.40 ~ .11 Apr. 1 42.52 - .34
Jan. 4 31.34 - .02 Aug.31 35.47 ~ .11 June 30 42 .82 - .64
Apr. 1 31.43 - .04 Sept. 1 35.47 - .01 July 1 42 .82 + .36
July 1 31.52 - .07 QOct. 1 35.52 ~ .02 Oct. 1 43.07 + .11
Oct. 1 31.66 | — .01 Dec.31 35.73 - .11 Dec. 31 43.37 - .19

1957 1965 1973
Jan. 1 +31.67 -0.04 Jan. 1 +35.73 -0.01 Jan. 1 +43.37 +0.81
Apr. 1 31.79 - .06 Feb.28 35.86 ~ .06 Apr. 1 43.67 + .51
July 1 31.92 - .07 Mar. 1 35.86 + .04 July 1 43.96 + .22
Oct. 1 32.00 - .02 Apr. 1 35.94 .00 Oct. 1 44.19 - .01
June 30 36.14 - .08 Dec. 31 44 .48 ~ .30
1958 July 1 36.14 + .02
Jan. 1 +32.17 -0.04 Aug. 31 36.24 - .01 1974
Apr. 1 32.32 - .05 Sept. 1 36.24 + .09 Jan. 1 | +44.48 +0.70
July 1 32.45 - .06 Oct. 1 36.31 + .06 Apr. 1 44.73 + 45
Oct. 1 32.52 - .01 July 1 44 99 +,.19
1966 Qct. 1 45.20 -~ .02
1959 Jan. 1 +36.54 -0.05 Dec. 31 45 .47 ~ .29
Jan. 1 +32.67 -0.03 Apr. 1 36.76 - .03
Apr. 1 32.80 - .03 July 1 36.99 - .02 1975
July 1 32.91 - .06 Oct, 1 37.18 + .02 Jan. 1 +45.47 +0.71
Oct. 1 33.00 .00 Apr. 1 45.73 + 45
1967 July 45.98 + .20
1960 Jan. 1 +37.43 +0.01 Oct. 1 46.18 .00
Jan. 1 +33.15 -0.01 Apr. 1 37.65 + .02 Dec. 31 46.45 - .27
Apr. 1 33.28 - .03 July 1 37.87 + .04
July 1 33.39 - .02 Oct. 1 38.04 + .10 1976
Oct. 1 33.45 + .03 . Jan. 1 +46.45 +0.73
1968 Apr. 1 [( 467 ) (( + .5)
1961 Jan. 1 | +38.29 +0.09 July 1 [( 47.0 Y [( + .2)
Jan. 1 | 43358 | +0.02 | Jan.31 | 3837 | + .09 | Oct. 1 |( 472 ) |( 0)
Apr. 1 33.70 + .02 Feb. 1 38.37 - .01
July 1 33.80 + .04 Apr. 1 38.52 .00 1977
July 31 33.81 + .06 July 1 38.75 + .01 Jan. 1 |(+47.4 )
Aug. 1 33.81 + .01 QOct. 1 38.95 + .04 Apr. 1 |( 47.7 )
Oct. 1 33.86 + .04 July ( 479 )
1969 Oct. 1 |( 48.1 )
1962 Jan. 1 | 4+39.20 +0.03
Jan, 1 +33.99 +0.04 Apr. 1 39.45 + .02 1978
Apr. 1 34.12 + .01 July 1 39.70 + .01 Jan. 1 |(+48.4)
July 1 34.23 .00 Oct. 1 39.91 + .03 Apr. 1 |( 48.6 )
Oct. 1 34.31 | + .02 July 1 [( 48.8 )
1970 Oct. 1 [( 49.1)
1963 Jan. 1 +40.18 0.00
Jan. 1 | 43447 -0.03 Apr. 1 40.45 - .03 1979
Apr. 1 3458 | — .05 | July 1 4070 | - .05 | Jan. 1 {(4+49.3 )
July 1 34.73 - .09 Oct. 1 40.89 - .01
Oct. 1 34.83 - .09
Oct. 31 34.90 - .12 1971
Nov. 1 34.90 - .02 Jan. 1 +41.16 -0.04
Apr. 1 41.41 | - .05
1964 July 1 41.68 - .08
Jan. 1 +35.03 ~0.08 Oct. 1 41.92 - .09
Mar. 31 +35.22 -0.15 Dec.31 | +42.22 -0.15

The quantity AT(A)=32¢18+TAI—UT1 provides a first approximation to AT=ET—UT,
the reduction from Universal to Ephemeris Time. TAI is the scale of International Atomic Time
formally introduced on 1972 January 1, but extrapolated to previous dates; UTI is the observed
Universal Time, corrected for polar motion. The correction AUT1=UT1—UTC is given for use
in connection with broadcast time signals, which are now UTC in most countries. Coded values of
AUT1 are now given in the primary time signal emissions, and may be as much as =+0s8. Dis-
continuities in UTC can occur at 0 UT on the first day of a month (exception: 1956 Jan. 4,
discontinuity at 19 UT). Special entries are given for the two dates bracketing any discontinuity
greater than 0%02. Values within parentheses are either provisional (two decimals) or extrapolated
{one decimal). Additional information is given in the explanation concerning time scales (page
527) and concerning the use of AT with ephemerides (pages 539-541).
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Table 3.2 Continued

tem I and System II).

CORRECTIONS

The American Ephemeris, 1970-1978

The corrections tabulated below should be added to Ag+180° and Ag+180° in the
Ephemeris for Physical Observations of Jupiter for the years 1970-1978. These
corrections should also be subtracted from the Longitude of Central Meridian (Sys-

1970
1971
1972
1973
1974
1975
1976
1977
1978

+0.03
+0.02
+0.02
+0.01

0.00
-0.01
-0.02
-0.03
-0.03

The American Ephemeris, 1972-1980

All the negative values of the Astrometric Declination of the four principal minor
planets, Ceres, Pallas, Juno, Vesta, for the years 1972-1980 require a correction of

—071.

For example, on page 281 of this volume:

1978 Aug. 16 for —31°15'5274 read —31°15'5275

The American Ephemeris, 1972-1977

The mean motion for the Earth in the table of mean elements at the top of page
216 is referred to a moving equinox while the mean motions for Mercury, Venus and
Mars are referred to a fixed equinox. For consistency, the Earth’s mean motion
should also have been referred to a fixed equinox; in which case its value should

have been 0.985609.

CIVIL CALENDAR

New Year’sDay . . . . . Sun.
Lincoln’s Birthday . . . . Sun.
Washington’s Birthday . . Mon.
Memorial Day . . . . . . Mon.

Independence Day . . . . Tue.

Jan. 1
Feb. 12
Feb. 20
May 29
July 4

Labor Day . . . . . . . .
Columbus Day . . . . . .
Veterans Day. . . . . . .
General Election Day . . .
Thanksgiving Day

Mon.
Mon.

Thue.

. Thu.

Sept.

Oct.

Nov.
Nov.
Nov.

11

23
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mean solar days or 365 days, 6 hourns, 13 minutes, 53 seconds. Keep

in mind that the perhelion is continually precessing.

PERIHELION
(January)

LINE OF APSIDES

_ APHELION
(July)

(October)

Figure 3.2 Nodal Passages of the Earth's Orbit
(From Bowditch, 1962)

Julian Day: The number of each day, counted consecutively since
the beginning of the present Julian period on January 1, 4713 B.C.
The Julian Day begins at noon, 12 hours later then the corresponding
civil day (see Table 3.3).

Julian Calendar: A calendar replaced by the Gregorian Calendar.

The Julian year was 365.25 days, the fraction allowed for the extra day
every fourth year (leap year). There are 12 months, each 30 or 31 days
except for February.which has 28 days or in leap year 29. "Thirty days
hath September, April, June, and November. All the rest have 31, ex-

cepting February, which has 28, although in leap years 29."
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Table 3.3: Julian Day Number (From EB, 1965)

Days Elapsed at Greenwich Noon, A.D. 1950-2000

yiak  JAN. O rEB. O MAR.O APR, 0 MaAY @ JUNEOQ JULY 0 AUG. O sEP. 0 OCT. 0 Nov. 0 pec. 0

150 243 3282 3313 13341 3372 3402 13433 3463 3494 3525 3555 3586 3616

1981 3647 3678 13706 3737 3767 3798 3828 3859 13890 3920 3951 3981
jus2 4012 4043 4072 4103 4133 4164 4194 4225 4256 4286 4317 4347
1983 4378 4409 4437 4468 4498 4529 4559 4590 4621 4651 4682 4712
1954 4743 4774 4802 4833 4863 4894 4924 4955 4986 5016 5047 5077
jves 243 5108 5139 5167 5198 5228 5259 5289 5320 5351 5381 5412 5442
1956 5473 5504 5533 5564 5594 5625 5655 5686 S717 S747 S778  S808
137 5839 5870 5898 5929 5959 5990 6020 6051 6082 6112 6143 6173
1958 6204 6235 6263 6294 6324 6355 6335 6416 6447 6477 6508 6538
1959 6569 6600 6628 6659 6689 6720 6750 6781 6812 6842 6873 6903
1960 243 6934 6965 6994 7025 7055 7086 7116 7147 7178 7208 7239 7269
1961 7300 7331 7359 7390 7420 7451 7481 7512 7543 7573 7604 7634
1962 7665 7696 7724 7755 7785 7816 7846 7877 7908 7938 7969 7999

jo63 8030 8061 8089 8120 8150 8181 8211 8242 8273 8303 8334 8364
1964 8395 8426 8455 8486 8516 8547 8577 B608 8639 8669 8700 8730

1965 243 8761 8792 8820 8851 8881 8912 8942 8973 9004 9034 9065 9095
1966 9126 9157 9185 9216 9246 9277 9307 9338 9369 9399 9430 9460
1967 9491 9522 9550 9581 9611 9642 9672 9703 9734 9764 9795 9825
1968 9856 9887 9916 9947 9977 *0008 *0038 *0069 *0100 *0130 *0161 *0191
1969 244 0222 0253 0281 0312 0342 0373 0403 0434 0465 0495 0526 0556

1970 244 0587 0618 0646 0677 0707 0738 0768 0799 0830 0850 0891 0921

1971 0952 0983 1011 1042 1072 1103 1133 1164 1195 1225 1256 1286
1972 1317 1348 1377 1408 1438 1469 1499 1530 1561 1591 1622 1652
1973 1683 1714 1742 1773 1803 1834 1864 1895 1926 1956 1987 2017
1974 2048 2079 2107 2138 2168 2199 2229 2260 2291 2321 2352 2382

1975 244 2413 2444 2472 2503 2533 2564 2594 2625 2656 2686 2717 2747
1976 2778 2809 2838 2869 2899 2930 2960 2991 3022 3052 3083 3113
1577 3144 3175 3203 3234 3264 3295 3325 3356 3387 3417 3448 3478
1978 3509 3540 3568 3599 3629 3660 3690 3721 3752 3782 3813 3843
1979 3874 3905 3933 3964 3994 4025 4055 4086 4117 4147 4178 4208

1980 244 4239 4270 4299 4330 4360 4391 4421 4452 4483 4513 4544 4574

1981 4605 4636 4664 4695 4725 4756 4786 4817 4848 4878 4909 4939
1982 4970 5001 5029 S060 S090 S121 S151 5182 5213 5243 5274 5304
1983 5335 5366 5394 5425 5455 5486 5516 5547 5578 5608 5639 5669

1984 5700 5731 5760 5791 5821 5852 5882 5913 5944 5974 600S 6035

1985 244 6066 6097 6125 6156 6186 6217 6247 6278 6309 6339 6370 6400
1986 6431 6462 6490 6521 6551 6582 6612 6643 6674 6704 6735 6765
1937 6796 6827 6855 6886 6916 6947 6977 7008 7039 7069 7100 7130
1988 7161 7192 7221 7252 7282 7313 7343 7374 7405 7435 7466 7496
1989 7527 7558 7586 7617 7647 17678 7708 7739 7770 7800 7831 7861

1990 244 7892 7923 7951 7982 8012 8043 8073 8104 8135 8165 8196 8226
1991 8257 8288 8316 8347 8377 8408 8438 8469 8500 8530 8561 8591
1992 8622 8653 8682 8713 8743 8774 8804 8835 8366 8896 8927 8957
1993 8988 0019 9047 9078 9108 9139 9169 9200 9231 9261 9292 9322
1994 9353 9384 9412 9443 9473 9504 9534 9565 9596 9526 9657 9687

1995 244 9718 9749 9777 9808 9838 9869 9899 9930 9961 9991 *0022 *0052
1996 245 0083 0114 0143 0174 0204 0235 0265 0296 0327 0357 0388 0418
1997 0449 0480 0508 0539 0569 0600 0630 0661 0692 0722 0753 0783
1998 0814 0845 0873 0904 0934 0965 0995 1026 1057 1087 1118 1148
1999 1179 1210 1238 1269 1299 1330 1360 1391 1422 1452 1483 1513

2000 254 1544 1575 1604 1635 1665 1696 1726 1757 1788 1818 1849 1879

Gregorian Calendar: The calendar used for civil purposes through-

out the world, replacing the Julian calendar and closely adjusted to

the tropical year.
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Note that it is common practice among satellite data users to refer
to the Julian day or date of a data set in terms of the day number of
the corresponding year (1-365 or 1~366). This is not inconsistent with
the classical definition since the initial day of the sequence is arbi-

trary.

3.2 The Annual Cyele and Zodiac

We must also consider the definition of sidereal time, but before
doing so, a brief discussion of the annual cycle and the zodiac is in
order. As the earth progresses through its annual cycle, there are four
solar passages which are used to distinguish the seasons and divide the
earth into its so called climate zones. There are two equator crossing
(equinoxes) and two maximum excursion passages (solstices) of the sun
with respect to the earth (see Figure 3.3). These are:

1. March or Spring Equinox

2, June or Summer Solstice

3. September or Autumnal Equinox

4. December or Winter Solstice
It is commonplace to refer to the summer and winter solstice latitudes
as the tropic of cancer and the tropic of capricorn, respectively.

To an observer on the earth the sun appears to achieve a maximum
latitudinal excursion of +23%27' or -23°27' at the solstices. The zone
between these two parallels is often referred to as the torrid zone.

The apparent motion of the sun, of course, is due to the inclination of
the earth's orbit about the éun. The apparent track of the sun is along
a plane which is called the ecliptic. When the sun reaches a solstice
position, the opposite hemisphere is having its winter in which the

limits of the circumpolar sun are approximately 23°27' from the pole.
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R

AUTUMNAL EQUINOX
{ September)
i

Winter Solstice

t
(March)
VERNAL EQUINOX

3

Figure 3.3 Solar Passages (From Bowditch, 1962)

These two polar circles define the boundaries between the temperate

zones and the frigid zones, that is, the so-called arctic circle and

antarctic circle parallels (see Figure 3.4).

+66°33' ARTIC CIRCLE

TEMPERATE  ZONE

+23°27' TROPIC OF CANCER

TORRID
EQUATOR

ZONE

-23°27' TROPIC OF CAPRICORN

TEMPERATE ZONE

—66°33' ANTARTIC CIRCLE

Figure 3.4 Climate Zones
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The names used to describe the boundaries of the torrid zone were
given some 2000 years ago when the sun was entering the constellations
Cancer and Capricorn at the time of the solstices. By the same token
the spring and autumnal equinoxes were taking place at the time the
sun was entering the constellations Aires and Libra. Thus, it is appro-
priate to refer to the solstices and the equinoxes as zodiacal passages.

What is the zodiac?

Figure 3.5 The Zodiac (From Bowditch, 1962)

Strictly, the zodiac is the circular band of sky extending 8° on
each side of the ecliptic (see Figure 3.5). The navigational planets
and the moon are within these limits. The zodiac is divided into 12

sections of 30° each, each section being given the name and symbol
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(sign) of the constellation within it. The sun remains in each section
for approximately one month., Due to the precession of the equinoxes,

the sun no longer enters the aforementioned constellations at the sea—
sonal passages. However, astronomers still list the sun as entering
these constellations; this is their principal astronomical significance.
The pseudo-science of astrology assigns additional significance, not
recognized by all scientists to the position of the sun and planets
among the zodiacal signs (see Bowditch, 1962). ,
Since the precession of the equinoxes plays an important role in

celestial position fixing, we shall define it:

Precession of the Equinoxes: A slow conical motion of the earth's

axis (like the spinning of a top) about the vertical to the plane of

the ecliptic, having a period of about 26,000 years (25,781 years)
caused by the perturbative attractions of the sun, moon, and other
planets on the equatorial protuberence (bulge) of the earth. It results
in a gradual westward motion of the equinoxes (50.27 arc-seconds per
year). Because of the precession, the zodiacal configuration with re-
spect to the sun at its seasonal passages, has shifted approximately
one section or constellation westward.

At the time of the definition of the zodiac, the sun was entering
the constellation Aires at the time of the Spring Equinox. This solar
position is of major importance to the sidereal reference system of
time. The celestial meridian corresponding to the sun position at the
time of a spring or vernal (from the Greek for spring) equinox defines
the reference meridian for sidereal time. The expression 'vernal equi~
nox" and associated expressions, are applied to both "times'" and

"points" of occurrence of various phenomena. The vernal equinox is
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also called the "first point of Aries" (y) or the "rams horns", although
strictly speaking we should now call it the "first point of Pisces" due

to the precession of the equinoxes.

3.3 Sidereal Time
We can now provide a set of definitions which describe the sidereal
time system:

Sidereal Time: Time that is based on the position of the stars.

A sidereal period is the length of time required for one revolution of
a celestial body about its primary axis, with respect to the stars.
Thus, a sidereal year is one revolution of the earth around the sun
with respect to the fixed celestial reference.

Now there are 365.24219879 mean solar days in a tropical year. Due
to the earth's revolution about the sun and the respective orientation
of the sun and a fixed celestial reference (star reckoning), a sidereal
day is actually shorter in time than a solar day. In fact, it is easy
to show that there is exactly one more sidereal day in an annual period
(vernal equinox to vernal equinox) than there are mean solar days (see

Figure 3.6). Thus:

1.002737909 sidereal time units

1 mean solar time unit

366.24219879/365.24219879

Therefore, a sidereal day is 3'56" shorter than a solar day.

Sidereal Year: A sidereal year (i.e. the period of revolution of

the earth relative to the stars) is 365.2563662 mean solar days (365
days, 6 hours, 9 minutes, 10 seconds) due to the precession of the

equinoxes (50.27" per year).

360°0'50., 27"
3600

365.2563662 = * 365.24219879
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CELESTIAL TRANSIT OCCURS
3'56.6" PRIOR TO A SOLAR

—_— TRANSIT
e \\
4 \
/ \  EARTH
/ A (Day n+1) e —
I -’___’_
[ e TIME 3's6.6"
\ \
\ ,
\\ P FIXED CELESTIAL
REFERENCE
\\;__//

Figure 3.6 Difference between a solar and sidereal year
(Not exact scale).

Hour Angles: Angular distance west of a celestial meridian or
hour circle of a body (e.g. the sun) measured through 360° (see Figure
3.7). There are three conventionally defined hour angles:

1. Local Hour Angle (LHA): Angular distance west of the Local

celestial meridian.

2., Greenwich Hour Angle (GHA): Angular distance west of the

Greenwich celestial meridian.
3. Sidereal Hour Angle (SHA): Angular distance west of the Vernal

Equinox celestial meridian (y).

o (OBSERVER)
(GREENWICH) o (FIRST POINT
OF AIRES)
(SUN)
(MOON) Q ®
¢ ,‘%

Figure 3.7 Hour Angles



4,0 GEOMETRICAL CONSIDERATIONS
4,1 Definitions of Latitude (Station Coordinates)

Since the earth is not a perfect sphere, there are a selection of
coordinates to choose from. Most systems are based on the assumption
that the earth can be represented by an oblate spheriod; that is, a
geometrical shape in which sections parallel to the equator are perfect

circles and meridians are ellipses (see Figure 4.1).

NORTH

ﬁl

v

QUADRANT OF ELLIPSE
OF REVOLUTION

¥~ EQUATOR

Figure 4.1 Model of the earth (From EB, 1965)

We define an oblate spheroid in terms of two radial axes (a, b) where:

semi~-major axis

nt

a

b

semi-minor axis

We can now define the flattening (f) parameter which is related to
the eccentricity of the ellipsoid of revolution. We also define the
eccentricity (e), a parameter which will be considered in the discus-

sion of orbital calculations and conic sections. The flattening (f) and

23
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eccentricity (e) are given by:

f = (a~b)/a C(4.])
= 0 for a perfect sphere
e =VaZ - b2/a (4.2)
= 0 for a spheroid or a circular orbit
Also:
e =V2f - £2 (4.3)
f=1-V1- e?

Note that in the 1limit as b - 0 then e > 0 and £ > 0. Values of these

parameters for the earth are given by:

'a = 6378.214 kn
S arora7e102 (4.4)
£ = 3.35289.1073
Note that:
b = a-(1-f) | (4.5)

We can also define a mean earth radius (c) by a weighted average:

(2a + b)/3

0
L]

(4.6)

6371.086 km

Using our adopted model of the geometric shape, we can define the
two conventional measures of latitude. Following the approach given
in Chapter 2 of EB and using Figure 4.2 as a guide we first consider
geocentric latitude:

Geocentric Latitude: The acute angle (¢) wrt the equatorial plane

determined by a line connecting the geometric center of the ellipsoid

and a point on its surface.
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NORTH
4
<.
CIRCUMSCRIBING
CIRCLE ™ OBSERVER
MERIDIAN
’ r,
b ¢l z¢ EQUATOR
$ B\{ § o,
CROSS SECTION
OF ELLIPSE ] a ol

Figure 4.2 Ellipsoid of revolution defining geocentric
latitude (Based on a figure from EB, 1965)

It is convenient to define the rectangular components (xc, Zc)’ as
we shall see later. It is also helpful to provide a derivation of x,
and z, in terms of a, e and ¢. To do so, we first define the reduced

latitude B:

B = the acute angle wrt the equatorial plane determined by a
line connecting the geometric center of the ellipsoid
and a point on a circumscribing circle (see Figure 4.2).
We will use the circumscribing cifcle later in the discussion

of the eccentric anomaly.

Since:
x =t cosd = a-cosfB (4.7
c c .
z, = rcsin¢ = a\/1-eZ sinp (4.8)
therefore:
r = Vx2+2z Z a V1 - ezsinzB (4.9)
c c c
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and:
sin¢=—z-9= V1 - e sinp
Te V1 - e2 sin2g
X ,
cos¢ = ;E-= cos

c V1 - ezsinZB

We square (4.10) and (4.11) and after multiplying by V1 - el :

a - e2)cos2g
1 - e2sin?g

1 - ez)cosz¢ =

now add (4.,12) and (4.13) and after some manipulation:

N V1 - e2
1~ ezsinzﬁ = 1 =
V1 - e2cos2¢

We now combine (4.10) and (4.14) to solve for sinB:

sin¢

Vi - e2c052¢

sinf =

similarly for (4.11) and (4.14):

V1 - e? cosd
V1 - e2 cos2¢

cosf =

Combining (4.16) and (4.7) with (4.15) and (4.8):

_aVl- e? cos¢
¢ V1 - ezcosz¢

_a V1 - e2 sing

¢ \/i - e2c032¢

Next, we define geodetic latitude, again following EB:

(4.10)

(4.11)

(4.12)

(4.13)

(4.14)

(4.15)

(4.16)

(4.17)

(4.18)
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Geodetic Latitude: The acute (¢') wrt the equatorial plane

determined by a line normal to the tangent place of a point on the
surface of the ellipsoid and intersecting the equatorial plane. Geo-—
detic latitude is often referred to as geographic latitude (see Figure
4,3).

Recalling Eqns. (4.7) and (4.8):

(4.7)

X

a cos
c g

a VY1l - e sinB (4.8)

N
1

we can now differentiate:

—dx_ = a sinB (dR) (4.19)

dz, = a VI - &2 cosB(dB) (4.20)
Now note:

ds = \/k—dxc)z + (dz)2 = a \’1 - e coszs(dB) (4.21)
and finally:

-dx
sing' = dsc - sinfB (4.22)
V1 - e2cos2B
' dzc _ V1 - e2 cosB (4.23)
cosgp = =

ds Vi1 - e2c0526
Finally, using Equations (4.10, 4.11) and (4.22, 4.23), it is

easy to show that:

tan_l[tan¢/(l—f)2]

¢'
(4.24)
tan_l[tan¢'°(lff)2]

-
1

This provides a convenient transformation between the station coordinate

systems.
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Figure 4.3 Ellipsoid of revolution defining geodetic
latitude (Based on a figure from EB, 1965)

A third definition of latitude is oiften used, particularly in the
process of surveying, that is astronomical latitude:

Astronomical Latitude: The acute angle (¢") wrt the equatorial

plane formed by the intersection of a gravity ray with the equatorial
plane. This latitude is a function of the local gravitational field
(direction of a plumb-bob), and is thus affected by local terrain.
Tabulation of station errors is required to convert to geodetic lati-
tude. Note that most maps are in either geodetic or astronomical
latitude whereas navigational analysis will usually use a geocentric

system,

4.2 Cartesian - Spherical Coordinate Transformations
It is necessary to define transformations between a spherical
frame of reference and a cartesian frame of reference. For satellite

navigation purposes, two systems are convenient:
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1. Declination-Right Ascension-Radial System (8,p,r) where we
have chosen declination to be defined in the same sense as

co-latitude:

x = resin(8).cos(p)
y = resin(§) +sin(p) (4.25)

z = r.cos(8)

§ = cos-l[z/ Vf;z + y2 + z2]

o = tan [y/x] (4.26)

sz +y2 + z2

La]
1

2. Latitude-Longitude-Radial System (¢,A,r):

x = recos(¢p)*cos(A)
y = recos(¢) +sin(d) (4.27)

z = r+sin(¢)

¢ = sin—l[z/ Yx2 + y2 + 22]

A = tan—l[y/X] (4.28)

sz + y2 + z2

-
L]

4.3 Sarellite -~ Solar Geometry

A standard requirement for satellite data analysis is the defini-
tion of the angular configuration of a satellite and the sun with
respect to a terrestrial position (¢,A,r). In order to specify the
three usual angles (zenith, nadir, azimuth), we first define the fol-

lowing polar coordinates:
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(¢e,le,re) = solar position
(¢s,ks,rs) = satellite position
(¢sA,r) = reference point

Converting these three positions to their terrestrial position vactors:

V@ = solar vector in earth coordinates (from 4,27)

Vs = satellite vector in earth coordinates (from 4.27)
+

Vp = reference point in earth coordinates (from 4.27)

We can define the solar and satellite zenith (GQ,OS), nadir (ne,ns),
and azimuth (QO,QS) angles and relative zenith (Gr) and azimuth (Qr)

angles:

Solar zenith = @ = cos—l[g (V. -V)]
) p ‘e P

(4.29)
-1F > > -
Solar nadir = n, = cos ['V@'(Vp - Ve)]
. A _ _l-)- -5 ->
Satellite zenith 2 Qs = cos§ [va(vs - Vp)]
(4.30)
. . “Ir 3 .0 9
Satellite nadir = ng = cos [—VS-(Vp - VS)]
-1pr.7 -+ >
Relative zenith = Or = cos [(Ve - Vp)-(VS - Vp)] (4.31)

Figure 4.4 illustrates the zenith and nadir angle defini-
tiomns.

In order to define the azimuth angles we first define a pointing
vector (350) which is subtented 90° from 3; in the same hemisphere as

3? and in the plane defined by the center of the earth, the north pole,
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LOCAL | VERTICAL

SATELLITE VECTOR

SOLAR VECTOR

SATELLITE

CENTER OF EARTH Ve / [j

NADIR

Figure 4.4 Definition of zenith and nadir angles.
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>
and the endpoint of Vp. Let:

> > > > I
S = (Vv - VP)/IIV - Vp (4.32)

Furthermore, we define:

> >

X, = Vgo! 1Vgoll
z =V /v (4.33
o P P +33)
> > -
Y =X XZ

e ® ®

- -
9, = cos l[(z0 XS X2)X ]
(4.34)
- sl [ 2).3
¢2 = cos [(Ze X S0 X Z@)"o ]
The solar zenith is then given by:

] = @1 for e, < 90

e

360-<I>l for @2 > 90

The satellite azimuth (¢S) is defined in the same way, Finally, we

have the relative azimuth:
¢ = MoD(|¢, - ¢S|, 180) (4.35)

See Figure 4.5 for an illustration.
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Figure 4.5 Definition of azimuth angles.



5.0 THE TWO BODY PROBLEM
5.1 The Inverse Square Force Field Law

We continue the analysis by considering the two body problem, ig-
noring all of the perturbative influences (i.e., thrust, drag, 1ift,
radiation pressure, proton bombardment or solar wind, assymetrical elec-
tromagnetic forces, auxillary bodies and any aspherical gravitational po-
tential of eithef body), that is we consider only the mutual attractions
of a body A with a body B and the resultant motions. Furthermore, we
assume that the motion under consideration is that of a satellite or
planetary body B (secondary body of mass m2) with respect to a central
body A (primary body of mass ml)°

For closed solutions we will utilize the inverse square force field

law:

->
e (5.1)
First, we determine the origin of the above equation. Essentially,

Equation 5.1 embodies the laws of Kepler and Newton., To review:

Kepler's Laws (Empirical-aided by astronomical observations)

I. Within the domain of the solar system all planets describe
elliptical paths with the sun at one focus.

II. The radius vector from the sun to a planet generates equal
areas in equal times.

ITI., The squares of the periods of revolution of the planets
about the sun are proportional to the cubes of their mean

distances from the sun.

Newton's Laws of Motion

I. Every body will continue in its state of rest or of uniform
motion in a straight line except insofar as it is compelled
to change that state by an impressed force.

34
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II. Rate of change of momentum (mv) is proportional to the
impressed force and takes place in the line in which the
force acts,

F = ma = m(dv/dt)
III. Action and reaction are equal and opposite.

Newton's Law of Universal Gravitation

Any two bodies in the universe attract one another with a force
(F12) which is directly proportional to the product of their
masses (m},m9) and inversely proportional to the square of the
distance (r)s) between them:

_ 2
F12 = Gmlmz/r12
2 9 (5.2)
=K m2/412
where:
2
K™ = Gml
G = Universal Gravitational Constant
= 6,373 - 10—8 dyne-c:mz-gm-2
my Z larger mass (e.g. the earth)
m, = smaller mass (e.g. a satellite)

We can derive the inverse square force field law from Newton's
second law and his law of universal gravitation. Adopting the notation

in Chapter 2 of EB, the Universal Law of Gravitation states:

Gm.m
F o= —=2 (5.3)

12 r2
12

Now consider an arbitrary inertial reference frame shown in Figure 5.1.
The force in the x direction le is:

le = Flzcose = Flé'(x2 - xl)/r12 (5.4)
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therefore:
Gm.,m X, - X
F - 172 . 2 1 (5.5)
1x r2 r12
12
and finally:
Gm.m
le r3 (x2 xl) (5.6)
12

force on body 1

y
A B
Y2 ')i?"’z
Flz Oom,
m, e
y| Om,,
A .
. X X2 > X

Figure 5.1 Arbitrary inertial coordinate reference
frame

Newton's second law states that the unbalanced force on a body in

the x direction is given by:

a*x, (5.7)
F =m
1x 1 dt2
therefore:
d2x (x, - x,) . (5.8)
m 1 = Gm,m 2 1
1 dt2 12 r3
12
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Now repeating the analysis for the y and z components we find:

ar (t. - £.)
m ———l = Gm.m 2 1
1.2 "2 7 3
12
or:
d2¥ m
N
2l - &’ _2’(r2 B ;1)/ri2
de 1

(5.9)

(5.10)

Now transform to a relative inertial coordinate system as shown in

Figure 5.2. From above:

d2+ >
m 1 = Gm,m ilg
1.2 ) 3
12
where:
-> T ?
12 270

(5.11)

(5.12)

(5.13)

(5.14)

which is the desired expression for the acceleration of body 2 with

respect to body 1.

From our arbitrary inertial analysis:

2
o 2 12 3
12
2
m ‘ X2 = Gm,m -fg;
2 dt2 21 r3

(5.15)

(5.16)
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X2

Figure 5.2 Relative inertial coordinate reference frame.

Now since Tyg = Tops and cancelling masses, then:
dle *12 (x)x,)
dt2 = Gm2 :3— = sz —:3——‘ (5.17)
13 12
2
d°x X (x,-x.)
2 = Gn, 2L - g, L2 (5.18)
dt2 1 r3 1 r3
12 12
and subtracting the two equations yields:
2 2 2
d™x d"x dx (x,-x,) (x.-x.)
2. -2 52 - o, — 4 (5.19)
dt dt dt rl2 rio
2
d“x (x, —x,)
12 _ . 2 1
7 = -G(ml + mz) —3 ' (5.20)
dt : r
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Now repeating the analyses for the y and z components we find:

2 >
d
o mtm) T
2 1 m 3 (5.21)
dt
1 I,
and finally:
dt2 : 3 (5.22)

where:
u= (ml + mz)/ml

= normalized mass sum

We generally apply (5.22) to a system where the primary mass (ml) is
much greater than the secondary mass (mz), yielding u approximately 1.0.
Often in the study of orbital mechanics, an n-body system arises
in which the desired origin of the coordinate system is the mass center
or barycenter; that is, motion is relative to the barycenter and not
any single central body (see Figure 5.3). We refer to such a reference

system as a Barycentric Coordinate System (see a review in Chapter 2

of EB). The utility of this frame of reference arises in the event

that the trajectory of a space vehicle would undergo less disturbed

motion if referred to a barycenter. Since we are primarily concerned
with near earth satellites we will forego an examination of the bary-
centric coordinate system. It is useful to examine the governing equa- .

tion, however:

a’c n 4 n
B2 _ _ o B2 > (1 1
) G[Z miL3 +6), 1712 (3 3 (5.23)
i=1 B2 i=1 B2 Ti2

i#2
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where:

n = 1 (the primary mass of the system) §
n = 2 (the space vehicle under consideration) )
and B represents the barycenter.
y
[ 3 mn ‘ :
Yn 4
OH\3 ms ? ;;
y2 | '
;la _Tml
1 —p X ‘ &

X Xg X2 X, :

Figure 5.3 Barycentric coordinate reference frame,
(Based on a figure from EB, 1965) v

5.2 Coordinate Systems and Coordinates
We first define the celestial sphere:

Celestial Sphere: An imaginary sphere of indefinitely large

radius, having the earth as the origin and the funadmental plane being
an infinite extension of the Earth's equatorial plane (see Figure 5.4).
To define the celestial sphere we first extend a line along the funda-
mental plane to a point fixed by the vernal equinox (y), which is the

reference meridian, and let that be the x-axis. The z-axis is given

© e fae g

by the earth’s spin axis or principal axis. An orthogonal coordinate
system is finally established by defining the y-axis as the cross

product of the z and x axes (see Figure 5.5).
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Figure 5.4 The celestial sphere (From Bowditch, 1962)
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r4
. PRINCIPAL  AXIS

X

y

P ¥~ FUNDAMENTAL PLANE

T* REFERENCE MERIDIAN

Figure 5.5 The right ascension - declination
inertial coordinate system.

This celestial reference frame is often termed a right ascension-
declination inertial coordinate system, in which declination (§) is
analogous to latitude (¢) (or as.the case may be -~ colatitude), and
right ascension (p) is analogous to longitude (A) or hour angle (HA).
Note that we refer to the equatorial plane as the fundamental plane,
the z-axis as the principal axis, the the vernal equinox as the ref-
erence meridian. Also note that the celestial coordinate system is
not truly an inertial system since it utilizes the terrestrial spin
axis as the principal axis. Since the earth's spin axis precesses
(giving rise to the westward precession of the equinoxes) we are left
with a non—-inertial reference frame if we consider very long time
periods. There is also a lunar influence on the earth's spin axis

which causes a nutation having a periodicity of approximately 18.5
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years. Superimposed on these motions is the so-called Chandler Wobble,
which has a period of approximately 14 months and is due to the non-
so0lid nature of the earth itself. For our purposes, the non-inertial
variation in the terrestrial spin axis is ignored.

It should be noted that we can define our coordinate system in any
way we choose, however, simplicity and convenience are the watchwords.
In designing coofdinate systems for the various orbiting bodies or ve-
hicles contained in the solar system, the same basic principles that
are used for the earth centered (geocentric) celestial coordinate system
are applied. Examples of various coordinate systems adopted for orbital

analysis are referred to as follows (see EB):

Reference Body Coordinate System
Earth Geocentric
Sun Heliocentric
Moon Selenographic
Mars Arcocentric
Satellite Orbit Plane

It should also be pointed out that there are a choice of coordi-
nates to be used once the coordinate system is defined. Again, the
choice is arbitrary, however, the chosen coordinate parameters should
have a natural relationship between the observer and the observed de-
pending on whether measurement, calculation, or description is the
nature of the problem on hand; Again, there are a variety of choices:

1. Declination (§) - right ascension (p) - radial distance (r)

2. Declination (§) = hour angle (HA) - radial distance (r)
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3. Latitude (¢) - longitude (A) - height (h)

4, Elevation (H) - azimuth (¢) - slant range (d)

5. Zenith (@) - azimuth (¢) - altitude (h)

6. Cartesian (x,y,2)

The solution of the governing equation (5.22) given in an earth~
relative celestial coordinate system will yield three constants after
the first integration (of the three component equations), and three
constants after the second. Since (5.22) is an acceleration form of a
linear, second order, ordinary differential equation, the first set of
constants are initial velocity terms (§,§,é) and the second set of
constants are initial position terms (xo,yo,zo). Thus, if we are given
a position vector and a velocity vector at an epoch time t0 (six orbital
elements and an epoch), we have a means to solve the governing equation.

Usually, this set of initial elements is not available since obser-
vations of the secondary body B are made from a rotating primary body
A (that is a coordinate system’that is different from that in which the
analysis will be performed). That is why elevation—azimuth angle ob-
servations or range-range rate signals must first be transformed to a
set of convenient orbital elements in the preferred coordinate system.
Since this problem comes under the more general problem of orbital de-

termination we will not consider it any further.

5.3 Selection of Units

Simplicity and computatipnal efficiency can be achieved with the
proper selection of units, based on the particular orbital problem.
The proper choice of physical units for length, mass, and time is pri-

marily determined by the dimensionality of the primary body A. We
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shall discuss two systems of units; the Heliocentric (solar origin)
and Geocentric (terrestrial origin) systems.
1. Heliocentric Units
Length: Astronomical Unit (A.U.)
The mean distance between the sun and a fictitious
planet, subjected to no perturbations, whose mass
and sidereal period are the values adopted by Gauss
in his determination of K@ (we will discuss K0
later).
1 AU, = 1,496 - 108 km (= 93,000,000 miles) per A.U.
Mass: Mass of Sun (m

@)’

me = 1,9888822 - 1033 gm per solar mass (s.m,)

Now if we use our previous definition:

2
+ = .
G(mg mp) K™ (5.24)
where:
my = mass of sun
mp = mass of planet
K2 = Gm@
= +
u (m@ mp)/m@

we can define normalized mass factors for the nine planets.
Note that the mass of a planet in the heliocentric system
would also include the mass of its moons. Table 5.1 pro-

vides normalized mass factors for the nine planets.
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Table 5.1: Solar System Normalized Mass Factors

Planet Normalized Mass Factor (u)
Mercury 1.0000001
Venus 1.0000024
Earth~Moon 1.0000030
Mars - 1.0000003
Jupiter 1.0009547
Saturn 1.0002857
Uranus 1.0000438
Neptune 1.0000512
Pluto 1.0000028

2. Geocentric Units
Length: Earth equatorial radius (e.r.)
1 e.r. = 6378.214 km (= 3960 miles) per e.r.
Mass: Mass of earth (me)
m, = 5.9733726 - lO27 gm per earth mass (e.m.)
Note the mass of the moon (mm):

m_ = 7.3473218 - 1023

gm per moon mass (mm)
must be considered as part of the planetary mass when con-

sidering the earth orbit in a heliocentric system, but is

ignored when considering a satellite in a geocentric system.

5.4 Velocity and Period
We need to define the velocity and period of an orbiting body.
Consider first the circular orbit of a satellite at height h (mass ms)

above the earth (radius Re). Therefore, the geocentric radius r is
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given by:
r = Re + h (5.25)

and:

5
m r

- . w223
g T =~ mg K ur/r (5.26)

> . 2
However, the magnitude of m_x is a centrifugal force —mS-V /r where V

is the circular velocity at orbital altitude. Therefore in scalar form:

VZ mS . K2 AT
ST 2 (5.27)
r
2
2 _K -y
e
v = Vi®u/ R, * h) (5.29)

<3
"

KVu/(Rg+ h) (5.30)

Thercfore V is the required orbit velocity for a circular orbit at
heigat h.

Since the circular orbital track would be a distance of 21r(Re + h),
for a single revolution, the orbital period (P) would be 21r-(Re + h)/V,

or:

2 (R, + ny3/2

P =
Kvu

(5.31)

Note that as the height of a satellite increases, the velocity required
to maintain it in circulér orbit decreases. See Figure 5.6 for an
illustration., Note, however, from a prcopulsion point of view, more
energy is expended in lifting a satellite against gravity to reach a
higher orbit, than is gained in the reduction or the forward speed re-

quired for orbit injection.
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Figure 5.6 Velocity and period of a satellite in
circular orbit as a function of altitude
(From Widger, 1966)

3/2 /

If we soive P = 21r.(Re + h) /(Kul 2) for h using a period P of
24 hours, we have solved for the required height of a geosynchronous
satellite; that is, an orbital configuration in which the period is
that of a single rotation of the earth. The required height for a
geosynchronous satellite in a circular orbit is thus approximately
35,863 km (42241.214 km from geocentric origin).

Now since we know the orbital period P, we can determine the ground

speed (V S) of a circular orbit, i.e., the velocity at radius Re°

Since the path of one revolution is 2w - Re, then

V = 2nR /P
gs e
R (5.32)
- e K o )/ —H—o
R +h 'R + h
e e

and applying equation (5.29):

R
e

gs = —(Ee—T—h) d V (5.33)

v



49

Table 5.2 tabulates wvarious orbital characteristics as a function

of satellite altitude.

Table 5.2:

Orbital Characteristics as a Function of Altitude -
Re = 6370 km or 3435 N, miles (From Widger, 1966).

Ground

Velocity Westward

Orbit Orbit - Orbital | {Non-Rotating Orxbital Displace,

Altitude | Altitude { Re+h- | Rt h Ret h Re Velocity Earth) Period Per Orbit

Km N.Miles | Km [N, Miles (T) m) km/hr knots | km/hr knots | hours min, Deg.Long,
150 81 6520 3516 1.024 .9770 28111 15245 27464 14894 1,458 87.48 21.87
185 100 - 6555 3535 1,029 .9717 28080 15203 27285 14773 1,468 88.08 22,02
200 108 6570 3543 1,031 .9695 28004 15188 27150 14725 1,476 88,56 22,14
250 135 6620 3570 1.039  ,9622 27901 15130 26846 14558 1,492 89,52 22.38
278 150 6648 3585 1,044 ., 9582 27839 15099 26675 12468 1.502 90.12 22.53
300 162 6670 3597 1,047 .9550 27795 15074 26544 1439 1,509 90.54 22.64
350 189 6720 3624 1.055 ~.9478 27690 15017 26245 14233 1.526 91,56 22.89
m 200 6741 3635 1.058  .9450 27649 14994 26128 14169 1,533 91.98 23,00
400 216 6770 3651 ‘1,063 ,9408 27589 14962 25956 14076 1,543 92.58 23,15
450 243 6820 3678 1,071 .9339 27488 14905 25671 13920 1.560 93.60 23.40
463 250 6833 3685 1,073 ,9322 27462 14893 25600 13883 1.565 93.90 23,48
500 270 6870 3705 1,079 .9271 27386 14851 25390 13768 1.578 94,68 23,67
550 297 6920 3732 1.086 ,9204 27287 14798 25115 13620 1,595 95.70 23,93
556 300 6926 3735 1,087  .9197 27277 14793 25087 13605 1.597 95.82 23,96
600 324 6970 3759 1.094 - 2138 27189 14745 24845 13474 1.612 96,72 24.18
649 350 7019 3785 1,102 .9075 27095 14694 24589 13335 1.629 97.74 24.44
650 3s) 7020 3786 1.1p2 «9073 27092 14692 24581 13330 1.629 97.74 24.44
700 378 7070 3813 1,110 .9009 ° 26995 14640 24320 13189 1.647 98,82 24.71
741 400 711 3835 1.116 .8957 26919 14597 24111 13075 1,661 99.66 24,92
750 405 7120 3840 1,118 .8945 26902 14588 24064 13049 1.664 99.84 24.96
800 432 7170 3867 1.126 .8883 26807 14556 25813 12912 1,652 100.92 25.23
834 450 7214 3885 1,131 .8842 26725 14503 23630 12824 1.697 101.82 25,46
850 459 7220 3894 1,134 . 8821 26715 14487 23565 12779 1.699 101.94 25.49
900 486 7270 3921 1,141 (8761 26624 14436 23325 12647 1.717 103,02 25.76
927 500 7297 3935 1,146 .8729 26575 14411 23197 12579 1,727 103,62 25,91
950 513 7320 3948 1.149 870t 26531 14388° 23085 12519 1,735 104.10 256,03
1000 540 7370 3975 1.157 8642 26441 14338 22850 12391 1.753 105.18 26,30
1019 . 550 7389 3985 1,160 .8620 26408 14320, 22764 12344 1,760 105.60 26,40
1050 567 7420 . 4002 1.165 .8583 26352 14290 22618 12265 1,771 106,26 26,57
1100 594 7470 4029 1,173 .8526 26264 14243 22393 12144 1,788 107.26 26,82
i1z 600 7482 4035 1,175 8513 26243 14232 2234) 12116 1.793 107,58 26,90
1150 621 7520 4056 1.181 .8469 26179 14194 22171 12021 1.806 108, 36 -27.09
1200 648 7570 4083 1.189 .8413 26089 14147 21949 11902 1.825 109.50 27,38
1205 650 7575 4085 1.189  .8409 26083 14145 21933 11895 1,826 109.56 27.39
1250 674 7620 4109 1.196  .8360 26005 14103 21740 11790 " 1,842 110.52 27,63
1297 . 700 7667 4135 1,204 .8307 25925 14059. 21536 11679 1,860 111.60 27.90
1300 701 7670 4136 1,204 .8305 25919 14057 21526 11674 1.861 111,66 27.92
1350 728 7720 4163 1.212 . 8251 25834 14011 21316 11560 1.879 112,74 28,19
1390 750 1160 4185 1,218 .8208 25769 13974 21151 11470 1.894 113,64 28,41
1400 755 7770 4190 1,220 .8198 25752 13966 21111 11449 1.897 113.82 28.46
1450 182 7820 4217 1,228 L8146 25670 13921 20911 11340 1,915 114.90 28,73
1483 . 800 7853 4235 1.233 8111 25615 13891 20776 11267 1,928 115,68 28.92
1500 809 7870 4244 1,236 .8094 25589 13876 20712 11231 1.934 116,04 29,01
1550 836 7920 4271 1,243 .8043 25508 13833 20516 11126 1.952° 117,12 29,28
1575 850 7945 4285 1.247 - 8016 25468 13810 20415 11070 1,961 117,66 29,42
1600 863 7970 4298 1,251 «7992 25428 13789 20322 11020 1.971 118,26 29.57
1650 890 8020 4325 1,259 .7942 25349 13747 20132 10918 1.989 119,34 29.84
1668 900 8038 4335 1,262 7924 25321 13730 ° 20064 10880 1.996 119,76 29.94
1700 917 8070 4352 1.267 .7893 25267 13703 19943 10816 2.008 120.48 30.12
1750 944 8120 4379 1,275 .7844 25191 13662 19760 10716 2,027 _12!.62 30.41
1761 950 8131 4385 1.277 . 7834 25175 13651 19722 10694 2,031 12]1.86 30.47
1800 971 8170 4406 1,283 .7796 25113 13619 19578 10617 2,046 122.76 30.69
1850 998 8220 4433 1.291 ,7749 25039 13578 19403 10522 2,064 123,84 30,96
1853 1000 - 8223 4435 1.291  ,7745 25033 13574 19388 10513 2,066 143,96 30.99

35815 19326 42185 © 22761 6.622 ,1510 11052 5992 —-— — 24,000 1440.00 —
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5.5 Elliptic Orbits
In the consideration of elliptic orbits governed by our principle
equation, the radius r, of the second body from the primary body, can

be given by:
r = p/(1 + e«cosv) (5.34)

which is simply the equation describing conic sections (see Figure 5.7),

where:
e = eccentricity
Vv = true ancmaly
p = semi-parameter of conic
= ed
DIRECTRIX
| y
ml——tl_
I 7 P(rv)
I Q / 1f a point P moves so that its distance from a fixed point
I /r (called the focus) divided by its distance from a fixed line
l p / (called the directrix) is a constant e (called the eccentricity),
"/ then the curve described by P is called a conic (so-called
I K X because such curves can be obtained by intersecting a plane
| v 0 - and a cone at different angles). If the focus is chosen at
l FOCUS origin O the equation of a conic in polar coordinates (r,v) is,
if 0Q = p and LM = d:
I - - ed
| 1 + ecosv 1 + ecosv
|]+<d —»

Figure 5.7 Conic sections (Based on a figure from Spiegal, 1968).

Thus we see that if p # 0, then:

0 <e <1 the conic is an ellipse

1 the conic is a parabola

o
It

l<e<ow the conic is a hyperbola
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In the following discussions the term semi~major axis (a) will be
used, It is defined as half the maximum diameter of the conic. Note

that (see Dubyago, 1961):

a = 0 for parabolic motion
0 < a < o for elliptic or circular motion

~o < a < 0 for hyperbolic motion

For an ellipse, a and p are related through e by p=ed=a(l—e2)°
As an aside, it is interesting to note that for any arbitrary
position of a vehicle, within the influence of the terrestrial gravi-

tational field, there is a given escape velocity (Vesc)' The magnitude

-5
of the initial velocity vector r determines the type of path, that is:

s
elliptic if ||r]} < Vose

>
parabolic if ||r]|= Vese

3
hyperbolic if ||| > Vosc

The escape velocity from a celestial body is given by:

- 1/2
V.= (2R (5.35)

where:

gravitational constant of body

g

R £ radius of body

t

For the earth and moon, the escape velocities of a missile launched

from the surface are:

Body Vesc

11 km © sec T

R

s Earth

R

Moon 2.5 km - sec-l
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Contrast the above to the velocity of an air parcel at the earth's
surface (no wind):

5 1

A = R, = 7.292 ° 10 ° * 6371 km * sec

par
(5.36)

0.46 km » sec T

where Q is the earth's angular velocity and Re is the earth radius.
The equation for an ellipse, in polar coordinates with the origin

at a focus, is given by:

a(l - ez)/(l + e.cosv) = p/(1 + e-cosv) (5.37)

]
]

Noting that p # 0, 0 < e < 1, and 0 < a < » for the planets, consti-
tutes a proof of Kepler's First Law.

A proof of Kepler's Second Law requires an integration of the area
swept out by the radius vector ?. This results in the definition of
the orbital period P in the relative inertial coordinate system which

we have established. The period is then given by:

P=——a (5.38)
Kyu
which corresponds to equation (5.31). A proof of equation (5.38) is
given in Chapter 3 of EB,

This is the appropriate form in a relative inertial coordinate

system. Note that for circular orbits:

vV =KYu/a | (5.39)

which corresponds to equation (5.30). For elliptic orbits V is not
constant. We will derive the velocity for elliptic orbits in Chapter

6.
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Now since the period P of a body is:

2
p =21 . 3/2 (5.40)
Kyu
we can square both sides to get Kepler's Third Law:
2 44T2 3 The squares of the periods of revo-
P = —a2a lution of the planets about the Sun (5.41)
Ky are proportional to the cubes of

their mean distances from the Sun.

It is interesting that Kepler derived his laws empirically, involving
many years of laborious data reduction. His 3rd law did not include
the mass factor U since the accuracy in his data simply did not allow

the detection of the secondary mass effect (see EB).

5.6 The Gaussian Constant

We can now define the Gaussian constant KO’ noting that:

2
p2 = (ng a3 (5.42)
K

and choosing a heliocentric system of characteristic units. It is
a simple matter to compute the numerical value of K2 or the Gaussian

constant:
K, =V K2 (5.43)

thus:

X 2r_ 3/2 (5.44)

= a
0] Pvrﬁ

Now since the period of the Earth is 365.256365741 mean solar days

(celestial period), and if the semi-major axis of the earth's orbit is

taken to be 1 A.U. and Y% = 1.0000015, then Ky = 0.017202099 A3/ 2 qay7L,
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This was the procedure Gauss used to determine K, in his 1809

0
publication "Theoria Motus Corporum Coelestium In Sectionibus Conicis
Solem Ambientium", i.e., Theory of the Motion of Heavenly Bodies Re-
volving Round the Sun in Conic Sections (see EB). Similar procedures

are used to obtain the gravitational constants of the other planets.

Table 5.3 provides gravitational constant data for the planets,

Table 5.3: Gravitational Constants of the Major Planets
(From Escobal, 1965)

Planet Semimajor Axis Gravifational Constants (Kﬁ)
~ (km) (A.U.3/2/Mean Solar Day)
Mercury 2,424 6.960 x 10°°
Venus 6,100 | 2.691 x 1077
Earth 6,378.15 2.99948 x 107°
Mars 3,412 9.786 x 107°
Jupiter 71,420 5.3153 x 10°%
Saturn 60,440 2,908 x 107
Uranus 24,860 1.136 x 107
Neptune 26,500 1.240  x 1072
Pluto &, 000 2,700 x 107

Note that for Table 5.3, 1 A.U. = 149,599,000 km and Kp is related to

K@ by Kp = K@ mp/m@. Also note that in the geocentric system, the

present value of Ke (earth gravitational constant) is 0.07436574 e.r.

* min ~.

3/2
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5.7 Modified Time Variable

It is often convenient in the treatment of orbital problems to
transform the time dimension to the so-called modified time wvariable
(t). The transformation involves a gravitational constant (e.g., K0

or Ke) and an epoch time too In Heliocentric units:

T = Ke(teto) (5.45)
whereas in Geocentric units:

T = Ke(t—to) (5.46)

The advantage of using this quantity can be seen if we recast

the governing equation in terms of t. Since:

a2t = x2a%e (5.47)

then:

dr _ _ 23/ (5.48)

1

transforms to:
2
Q_% - u_r)/r3 (5.49)
dt

and K2 does not appear.
Use of characteristic units, leads to a new unit of velocity

(VCSU)’ the circular satellite unit velocity (see Chapter 3 of EB):

(5.50)

<

n

=
=

csu

In the Heliocentric System:

1 3/2 ‘/ 1
= —_— = —_— 5.51
Vcsu K0 th Wil 0.017202099 A.g;y 1 AU, ( )
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11

A = 0.017202099 A.U. * 1.496 . 100" m - 1 day
csu day A.U. 86400 sec (5.52)
= 29,785 m/sec
In the Geocentric System:

- /1 _ 3/2 v/ 1

VCSU Ke 1 e T, = 0-07436574 _@L_r:— __1 . T. (5053)

min
VCsu = 0.07436574 e.r. « 6.378214 o 106‘m *+ 1 min

min e.r, 60 sec
' (5.54)

7,905 m/sec

5.8 Classical Orbital Elements
Let us first establish an elliptic frame of reference in which
we consider coordinates along X s ¥, axes in a plane containing the

orbit (see Figure 5.8).

APOFOCUS
N

-— O

[
Q

Figure 5.8 Elliptic frame of reference
(Based on a figure from EB, 1965)
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We have already defined:

1]
il

= eccentricity
Va2 - b2/a

a = semi-major axis

b = semi-minor axis
P = semi-parameter of conic
= a(l-e?)

true anomaly

[EN

v
In addition, the positions where dr/dt are zero are called apsis
(plural for apse). Elliptical orbits possess two points where the
above condition is satisfied, i.e., the minimum radius position
(perifocus) and the maximum radius position (apofocus). In discussing
the sun in its ecliptic, we refer to the apsis as perihelion and ap-

helion (see Figure 5.9).

EARTH

APHELION
_/ SUN

A\ //;
PERIHELION

ORBITAL
TRACK ’

Figure 5.9 Perihelion and aphelion of earth in solar orbit
(Not exact scale)
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A complete set of orbital elements sufficient to describe an orbit
are the "Classical Orbital Elements". They are as follows:

1. Epoch Time (t,): Julian day and GMT time for which the
following elements are defined.

2. Semi-major Axis (a): Half the distance between the two apsis
of perifocus and apofocus,

3. Eccentricity (e): Degree of ellipticity of the orbit.

4, Inclination (i): Angle between the orbit plane and the
equatorial plane of the primary body.

5. Mean Anomaly (My): Angle in orbital plane with respect to
the center of a meamn circular orbit, having a period equi-
valent to the anomalistic period, from perifocus to the
satellite position (anomalistic period is discussed in
Chapter 6).

6. Right Ascension of Ascending Node (Qg): Angle in orbital
plane between vernal equinox (reference meridian) and
northward equator crossing.

7. Argument of Perigee (wy): Angle in orbit plane from
ascending node to perifocus.

The abo%e set of elements satisfies the requirement of defining six
constants and an epoch time noted in Section 5.2. Note that if the

epoch time were to correspond to perifocus, the mean anomaly would be
zero and thus would be an unnecessary parameter. This is generally not
the case with either NASA, NESS, ESA, or JMS orbital element trans-
missions. Of the 7 parameters, the three angular quantities (Mo, Qo, wo)
are subscripted similar to to indicating that they are time dependent
quantities. The time dependence of a two body orbit will be discussed

in Chapter 6. The European Space Agency has used true anomaly rather than
mean anomaly in their orbital transmissions for the Meteosat and GOES-1
satellites. This presents mno difficulty as will be seen in the following
section. Appendix A provides examples of orbital parameter trans-

missions for various U.S., European, and Japanese satellites.
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5.9 Calculation of Celestial Pointing Vector

First we recall the essential angles:

i = Orbital inclination
Qo = Right ascension of ascending node (note that y, is
defined as the right ascension of descending node)

Wy = Argument of perigee

Following the approach given in Chapter 3 of EB, the angles i, Qo’ W,
(the "Classical Orientation Angles'") are used to define the orbit
plane in celestial space, defined by an orthogonal (I, J, K) coordinate

system (as shown in Figure 5.10).

+2 {— PERIFOCUS

*~ ORBIT PLANE

+y
*~ EQUATOR

Figure 5.10 The Classical Orientation Angles and the
Orthogonal I, J, K Coordinate System
(Based on a figure from EB, 1965)

Note that:
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From Figure 5;10 it is convenient to define retrograde and direct
orbits:
1. Retrograde: Orbits whose motion is in the direction of y to x.
2. Direct or Prograde: Orbits whose motion is in the direction of
X to y.
Compare the above with the classic definition of a retrograde orbit:
Motion in an orbit opposite to the usual orbital
direction of celestial bodies within a given system;

i.e., a satellite motion, in a direction opposite to
the motion of the primary body.

Since the use of angles is cumbersome, we transform to a set of

orthogonal vectors (P, Q, W) in a cartesian reference frame (see

Figure 5.11):

P is a vector pointing toward perifocus
Q is in the orbit plane and advanced 90° from P

W is the normal to the orbit plane

fATELLWE

Figure 5.11 The P, Q, W orthogonal reference frame
(Based on a figure from EB, 1965)
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The set of orthogonal vectors (U, V, W) can also be defined (see
Figure 5.12). These vectors will not be used in our analysis, however,
they are useful vectors for additional analytical study (see EB for

an explanation):

U is the vector always pointing at the satellite in the

plane of the orbit

V is the vector advanced from U, in the sense of increasing
true anomaly, by a right angle

W is the normal to the orbital plane and is given by U x V

+Z

ORBIT PLANE

Figure 5.12 The U, V, W orthogonal reference frame
(Based on a figure from EB, 1965)

Note that if the satellite is at its perifocal position, the (P, Q, W)
orthogonal set is equivalent to the (U, V, W) orthogonal set.
Since (i, Qo’ mo) are the Euler angles of a coordinate rotation,

we can develop a transformation between the (I, J, K) system and the
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(P, Q, W) system. The direction cosines of this transformation are

thus:
P.= cos Wo * cos Qo - sin wg + sin @, * cos i
(5.55)

P =cosw_ * sin & +sinw * cos § =< cos i

v o} o o o
P =sinw °* sin i

z o
Q =-sinw_* cos & —-cosw_+ s8in  + cos i

X o o o o

(5.56)

Q =-sinw_*sin Q +cosw_ * cos § - cos i

y o o o o
Q =cosw . sin i

Z o]

W =8in Q + sin i

x o

W = -cos Q_ - sin i (5.57)

y o

W = cos i

z

Therefore we have:
P PPP I
Xy z
Q| = QnyQZ « | J (5.58)
1Y WWW K
Xy z

where (P, Q, W) is wrt the orbit plame frame of reference and (I, J, K)
is wrt the celestial frame of reference, Note that the (P, Q, W)
system utilizes (Xw’ym’ zw) cbordinates (see Figure 5.10) whereas the
(I, J, K) system utilizes (x, y, 2z) coordinates (see Figure 5.11).

Now if (P, Q, W) are mutually orthogonal and we define the trans-

formation matrix B, where:
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P P P
y z
B = QX Qy Qz (5.59)
W W W
vy 'z
then:
X, X
Yo | = Bly (5.60)
Z Z
W
and since:
g7t = gt (5.61)
therefore: -
X X
@
T
vy{=8B Y (5.62)
z Z
w
where:
Px Qx wx
T
B™ = P W 5.63
y QY y ( )
Pz Qz wz
so that:
X = mex + wax + szX
y = Xwa + way + way (5.64)

N
]

P+ +
x(l) Z y().)QZ ZLDWZ

Now since the satellite always remains in the P,Q orbital plane, then

z, is always zero. Therefore:
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W
Il

P+
o' x mex

«
]

way + way (5.65)

X(l)PZ + y(l)'QZ

N
]

implying that if we can determine (Xw’ yw), we can solve for a celestial
position vector. Note that if we remain in the orbital plane coordinate
system as long as possible, we will have an easier time than working

in a 3-dimensional system.

In order to determine orbit plane coordinates we need to derive
Kepler's Equation which relates geometry or position in the orbit plane
to time. We will restrict the analysis to an elliptical formulatien,
ignoring the parabolic and hyperbolic formulations. We first need a
new definition, i.e., the eccentric anomaly (see Figure 5.13).

Eccentric Anomaly (E): The angle measured in the orbital plane

from the P axis to a line through the origin and another point de-
fined by the projection of the moving vehicle in the y, direction upon
a circumscribing circle. Note that this angle is analogous to the
angle B (reduced latitude) which was defined in Chapter 4 during the

discussion of station coordinates.,

Q
] PROJECTION OF SATELLITE
JPOSITION ON CIRCUMSCRIBING

CIRCLE
+ CIRCUMSCRIBING CIRCLE

SATELLITE

Figure 5.13 Definition of eccentric anomaly
Based on a figure from EB, 1965)
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Recalling the definition of true anomaly (also shown in Figure 5.13):

True Anomaly (v): Angle in the orbital plane with respect to a

focus of the ellipse from the perifocal position to the satellite
position.

and with the aid of the previous figure:

X =T cos vV

© : (5.66)

Y, =T sin v

x, = ascosE - ase (5.67)
Now since:

r = p/(1 + eccosv) (5.68)
then:

r =p/(1+ e-xw/r) (5.69)
or:

p=r+ ex _ (5.70)
But we know:

p = a(l - &) (5.71)
therefore from equation (5.67):

X = a(cosk - e) (5.72)
we have:

r + e-a(cosE - e) = a(l - e2) (5.73)

r =a(l - e2 - ecosE + ez) (5.74)

r = a(l - ecosE) ' (5.75)
Now since:

ax?iy? (5.76)
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by manipulation:
y, = a(sink « ¥ 1-e?) (5.77)

and thus equations (5.72) and (5.77) give us orbital plane coordinates
in terms of Classical Orbital Elements and the eccentric anomaly.

We can now develop the relationship between E and v. Noting that:

a(cosE ~ e) = rcosv
2 (5.78)
= a(l - e7) .
1 + ecosv cosv
and with suitable manipulation:
cosy = S0SE -~ e (5.79)

1 -~ ecosE

Also:

asinE Y1-e2 = rsinv

_ _ 2
=al - e9) .,

a(l
1 + ecosv

Now using equation (5.79) to define cosv and with suitable manipulation:

. _a2
EJiE_!/_l_e_. (5.80)

sinv = 1l - ecosE

Equations (5.79) and (5.80) thus provide a transform pair between E
and v. If we invert the expressions, we have a transform pair between

v and E. It is easy to show that:

cOSE = cosv + e
1 + ecosv
(5.81)
~e2 .« si
sinE = Vl e sinv

1 + ecosv
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Now we will go through a brief derivation of Kepler's equationm.

First we note:

- a B sinE

q]
[}

(5.82)
a E \ll-e2 cosE

o
il

Next we require some identities that are basic properties of orbits.

From equation (5.49):

e _ 3 _ - >
L.F¥=-"AHFT (5.83)
dt 3
r
therefore:
'r*x¥=1%?x¥=o (5.84)
r
Now since:
%T-(¥xr)=}’x?+}*x¥ (5.85)
therefore:
d - - _
e (rxzt) =0 (5.86)
and:
TXT-= h = a vector constant (5.87)
(? X ;) ch = h2 Z a scalar constant (5.88)
A proof in Chapter 3 of EB shows that:
= BE!H_..__. (5.89)
L =T ¥ ecosv °
and therefore:
wp=pa(l-ed) =h’=(@Fx? * &7 (5.90)
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Now expanding the right hand side of equation (5.90):

i j k i j k
pea(l - ez) = |x yv O ° x vy O
w W w "W
X ym 0 x Y, 0
results in the following:
2

2y _ c
pea(l = &%) (waw ymxm)

From the definitions of xm, yw, iw’ §m it is easy to show that:

Vi

a3/2

= (1l -e cosE)ﬁ

Now if we integrate equation (5.87) from ' = 0 to t' = 71

'/—" T ET
L= dt' = (1 - e cosE)dE'

we find:

We now recall the definition of the modified time variable:

T =K(t - to)

(5.91)

(5.92)

(5.93)

(5.94)

(5.95)

(5.96)

where we understand that from the integration limits, the initial time

to corresponds to the point on the orbit where E = 0. We shall call

this time T, the time of perifocal passage. Substituting for T, such

that E = Et’ we have Kepler's equation:

Vu

3/2
a

K(t - T) = E - e sinE

(5.97)



69

Now we call (HK/a3/2 the mean motion n, where:
n= Y K (5.98)
a3/2

and it is now apparent that we have a formulation for the mean anomaly

M)

M= ace - T) (5.99)

Note that M is one of the Classic Orbit Elements:

Mean Anomaly (M): Angle in orbital planme with respect to the

center of a mean circular orbit, having a period equivalent to the
anomalistic period, from perifocus to the satellite position. We
shall defer our discussion qf anomalistic period until we discuss
perturbation theory in Chapter 6.

We now see what the mean motion has to do with the period. Re-

calling equation (5.40):

21 a3/2
KV¥uy

P = (5.100)

Therefore the mean motion constant (n) and the period (P) are simply

reciprocal quantities:

- 2m

n="5
(5.101)

p =27

n

It is important to note why the recovery of an accurate value of

the semi-major axis (a) from raw orbit tracking data is so important.,

3/2

Since the period is directly proportional to a , any error in
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recovering the semi-major axis translates to a cumulative error in
position due to an incorrect period. Figure 5.14 provides a graph for
both a low orbiting satellite and a geosynchronous satellite indicating

the period error corresponding to errors in specifying the semi-major axis.

24 -240 4
o
Zf\
x 20 200 ¢
w <<
o~ ok
Do 16 4160 € o
o2 gggg
%5 12 H120 Y
£0 Z{E
2 1% ==
w <«— LOW ORBITER
o a4l da0 £8&
w w
1 | | | | 1 | | | L
I 2 3 49 5 6 R - 9 10
% ERROR IN SPECIFYING SEMI-MAJOR AXIS
Figure 5.14 Error in determining satellite period corresponding
to error in recovering the semi-major axis
From equations (5.97) and (5.99) we have a relationship between
M and E:
M =E - e sinE (5.102)

however, we want E in terms of M, Since equation (5.102) is a trans-
cendental equation we can transform it. First equation 5.102 is

differentiated:

dM = (1 - e cosE)dE (5.103)
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Next we rearrange and integrate from the position of perigee at which
Eo = Mo = (0, to an arbitrary position in the orbit corresponding to

(E Mt) :

= _a 5.104
dE = E; = 1 - e-.cosE ( )
(s} (o]

We can now express the term under the integral of equation 5.104 as a

t,

Fourier expansion:

Mt ‘ o
‘a
_ “o 2 : . mrM mmM
Et = > + (am cos —— + bmsin e ) dMm (5.105)
fo) mn=1
where 2% is the period of the function and:
. 24
a A (1 - e cosE) cos (= dM
(o)
2%
_1 -1 mrM
bm =7 (1 - e cosE) sin <T> daM (5.106a)

[ sand

o
28
a = - (1-e cosE)_l aM
o 2
o .

Now substituting for dM from equation (5.103) and noting that 22 = 2w:

2T
a = —1:/‘ dE = 2
o T
o (5.106b)

27

a = %/cos (m: M)dE
m w
o

and all bm = (0 since we are integrating an even function. Now using
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our definition of M from equation (5.102):

2T
cos~{m(E - e sinE)} dE

A [

m
o}

Now using an integral representation property of Bessel functions (see

Abramowitz and Stegun, 1972):
a = 2J (me) (5.107)
m m

where Jm is a Bessel function of the first kind of order m and argu-

ment me:

. ot (E)Zk-i-m . (E>2k+m
Tn(me) =Z oy (k—l-zm)! =Z k!r(kzmﬂ) (5.108)
=0 =0

We can now rewrite equation (5.105) as:

= 1 <+ E (53109)
and integrating, we can finally express the eccentric anomaly E,
explicitly in terms of M and e with a Fourier-Bessel series:
1 . (5.110)
=M+ 2 p Jm(me) sin(mM) o

m=1
where E and M represent the eccentric and mean anomaly at an arbitrary
time t.
The above expression reméins cumbersome for computer calculations.
However, the series term can be expanded in powers of e. Noting that

e < 1.0, we can truncate at some power of e, say 5:
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5

e - CO°B) LM, ),
01-1! 1!-°21 213!

J2(2;e) = e—zz - -e; + eee

J3(3-e)' = —193 o3 2—8513 e+ ...

J4(4'e) =-% e4 L

J5(5-e) = g%% e5 + o0

Now if we collect terms in similar powers of e:

- 2.8, o
E=M+ 1°73 sin(M)

2 e2

+‘§‘°ToSin(2M)
2 9 3 . 2 1 3

+ 3°76° ¢ ° sin(3M) - T°76° ¢© sin(M)
202-.43 i _3.,!:. . 1

+ 7°3° ¢ sin(4M) 5 °§ " © sin(2M)
2625 5 2, 8 5

+ 5 ° Jeg * © sin(5M) 3 ° D56 ‘e o sin(3M)
2 1 5

TT3g @ s

Simplifying:

2

(5.111)

(5.112)

E=M+ sin(M) ¢° e +-§-—1-E-(-2-!l ° e2 +-§ [3 ¢ sin(3M) - sin(M)]e3

+-% [2 - sin(4M) - sin(2M)] - e

(5.113)

+ == [125 + sin(5M) - 81 o sin(3M) + 2 . sin()] + e

384
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We now note that all the coefficients of the expansion are less than
one, thus insuring that the truncation in powers of e only ignores
increasingly smaller terms. Now we can apply the trigonometric multiple

angle relationships:

sin(2M) = 2sin(M)cos (M)
sin(34) = 3sin(M) -~ 4sin3(N0
‘ 3 (5.114)
sin(4M) = 4sin(M)cos(M) - 8sin” (M)cos(M)
sin(5M) = 5sin(M) - ZOsin3(M) + 16sin5(M)

Substituting and simplifying we arrive at our final equation for E in
explicit terms; an expression which involves only a single sin and cos

calculation insofar as computational requirements are concerned:

E=M+ sin(M) ¢ e + sin(M)cos(M)e2

+ [sin(M) - (3/2)sin3(M)]e3 ‘
(5.115)

+ [sin(M)cos(M) - (8/3)sin3(M)cos(M)]e4

+ [sin@D) - (17/3)sin’ () + (125/24)sin’ (M) e’
Note that if we consider only the first power term (for example, in

the event e is very small), then:
E =M+ e°sin(M) (5.116)

To illustrate the error in ignoring the higher order terms we
examine the eccentric anomély of the sun with respect to the earth
under various orders of expansion. Table 5.4 provides the results.
Appendix D provides a computer solution for an apparent solar orbit

which considers the above expansion.



75

Table 5.4 Eccentric Anomaly of Sun wrt Earth Under Various
Orders. of Expansion (Eccentricity of solar orbit
is .081820157)

Mean Anomaly

Eccentric Anomaly

1 2 3 4 5

e e e e e
0 0.000000 0.000000 0.000000 0.000000 0.000000
15 15.021177 15.022850 15.022978 15.022987 15.022988
30 30.040910 30.043809 30.043980 30.043987  30.043986
45 45,057856  45.061203 45.061300 45.061292  45.061291
60 60.070858 60.073757 60.073698 60.073678 60.073677
75 75,079032 75.080706 75.080494  75.080478  75.080479
90 90.081820 90.081820 90.081546  90.081546  90.081548
105 105.079032 105.077359 105.077147 105.077164 105.077165
120 120,070858 120.067960 120.067900 120.067920 120.067919
135 135.057856 135,054508 135.054605 135.054613 135.054611
150 150.040910 150.038011 150.038182 150,038176 150.038176
165 165.021177 165.019503 165.019631 165.019621 165.019622
180 180.000000 180.000000 180,000000 180,000000 180.000000

The stage is now set for the calculation of a celestial pointing

vector. We first transform the epoch from to to the time of perifocal

passage (T). Since:

Mo = n(t0 - T) (5.117)
therefore:

T = t, - Mo/n (5.118)
Thus we can now solve for M at any arbitrary time t:

M= n(t - T) (5.119)
and then solve for E:

E=M+ e sin(M) + ... (5.120)

We now solve for X, and Yy and note that zZ, is always 0:
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X, = a(cosE - e)

y, = a(sinE + V1-e?) (5.121)
z =20

W

yf =B vy (5.122)

T | :
where B~ is the transpose of the celestial frame-orbital plane trans-
formation matrix. This completes the desired solution.

It is useful to summarize the relationships between M, v, and E:

M = E ~ eesinE

. (5.123)
E=M+ essinM + ...
cos v = (cosE - e)/(1 - e cosE)
(5.124)
sin v = V1 - e2+ginE/(l - e cosE)
cosE = (cosv + e)/(1 + e cosv)
_ (5.125)
sinE = V1 - e2.sinv/(1 + e cosv)

Now recall that ESA uses True Anomaly (vo) rather than Mean Anomaly
(Mo) in their orbital element transmissions. Thus before we can apply
equation (5.118), we first transform v, to an initial eccentric anomaly
Eo:

EO = cos-l[(cos v, + e)/(1L + e cos vo)] (5.126)
The initial mean anomaly can now be solved:

MO = Eo + e-sinEo (5.127)
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5.10 Rotation to Terrestrial Coordinates
Finally, we transform to our rotating frame of reference (i.e.,

the earth). This is accomplished by noting that the observer's meri-
dian is rotating with an angular velocity equal to p, that is the
sidereal rate of change. Thus the observer's right ascension can be
given by:

p=p, tplt-t) (5.128)
in which we have defined:

p_ = SHA

° (5.129)
= (ZN/Pd)°S

©
i

where Pd is the daily period (24 hours), tg is a sidereal epoch, and
SHA is the sidereal hour angle at the epoch te. We can choose SHA = 0,
i.e., a time when the Greenwich meridian is in conjunction with the
vernal equinox. To do so, the "Universal and Sidereal Time'" table
from the American Ephemeris and Nautical Almanac can be used. Table
5.5 provides an example from the 1978 version for January, in which
can be seen that on January 1, at 17 16 00 GMT the vernal equinox

and the Greenwich meridian are aligned. S simply converts solar mean

time to sidereal time, where:
S = 366.25/365.25 (5.130)

Thus, by rotating the (x, y, z) vector through an angle p, we finally

achieve our desired earth reference vector (xe, ye, ze):

X, = cos(p)*x + sin(p) -y
Ve = -sin(p) °x + cos(p)-y (5.131)
z =z
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Now, usiné the transformation between cartesian and spherical coor-
dinates, we can solve for the sub-satellite point (¢Sp, ASP) in geo-
centric coordinates and the satellite height (h). PFirst, we solve for
latitude and longitude (¢,A) and the radius coordinate (r) in a spher-

ical reference frame:

R=d
L]

=1 2 2 2
sin “[z_/ ere +y, "+ 2]

>
]

tan_l[ye/xe] (5.132)

[a]
]

V/X 2 +y z + z‘2
e e e

Finally we transform to geocentric coordinates (¢SP, Asp) and height

(h):
¢sp = cos—l[cos¢/ Vl—ezsin2¢]
Xsp = A (5.133)
hsp=r - Re

where Re is the earth radius at latitude ¢sp and e is the eccentricity
of the earth itself.

Computer codes adopted to the above methodology are given in
Appendices B and D. Appendix B considers an earth-satellite config-
uration whereas Appendix D considers an earth-sun configuration.
Appendix C consists of a numerical routine used to determine an earth
satellite equator crossing period which will be discussed in Chapter
6. Appendix E gives two approximate solutions for determining solar
position; these routines can be compared to the solution given in

Appendix D. Appendix F represents a set of library routines applicable
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to the aforementioned orbital codes, and finally Appendix G provides a
solution for determining the required inclination for a sun-synchronous

orbit (this problem is discussed in Chapter 6).
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244
3508:5
3504-5
3510:5
35115
3512-5

35135
3514-5
35155
3516.5
35175

3518.5
3519-5
3520-5
35215
35225

35235
3524-§
3525-5
3526-5
3527-5

3528:5
3529.5
35305
35315
3532:5

35335
3534-5
3535-5
3536:5
35375

35385
3539-5
35405
3541-5
35425

3543-5
35445
35455
3546-5
3547-5

35485
35495
3550-§
35515
3552-§

35535
3554-5
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Universal and Sidereal Time Table for January, 1978
(From the American Ephemeris and Nautical Almanac,

1978)

G. SIDEREAL TIME Equation of

(G.H.A. of the Equinox)

Apparent

hm s

6 37 13-506
6 41 10.059
6 45 06.611
6 49 03-164
6 52 59-718

6 56 56.275
7 00 52.835
7 04 49-397
7 08 45.960
7 12 42:524
7 16 349-086
7 20 35-644
7 24 32-200
7 28 28.753
7 32 25-305

7 36 21-857
7 40 18-409
7 44 14-963
748 11.519
7 52 08.076

7 56 04-634
8 oo 01-193
8 03 57-752
8 07 54-310
8 11 50.868

815 47-424
819 43-979
8 23 40-531
8 27 37.082
8 31 33-633

8 35 30-183
8 39 26.735
8 43 23.289
8 47 19-845
8 51 16.403

8 55 12:964
8 59 09.524
9 03 06.084
9 07 02.642
9 10 §9-197
9 14 55-748
9 18 52.298
9 22 48-847
9 26 45-397
9 30 41-948

9 34 38.500
9 38 35-054

Mean

13-280
09-835
06391
02-946
§9-501
56-057
52-612
49-167
45-723
42-278

38-834
35-389
31-944
28.500
25-055

21.610
18-166
14-721
11.276
07-832

04387
00-943
57-498
54-053
50-609

47-164
43719
40-275
36.830
33-385
20-041
26-496
23.052
19.607
16.162

12.718
09-273
05-828
02-384
58-939
55+495
52.050
48-603
45-161
41-716
38.271
34-827

Equinoxes
at0"U.T.

5
+0-226
223
-220
.218
217

+0-218
222
229
238
246

+0-252
-255
.256
254
.250

+0-247
244
242
242
244
+0-247
-250
254

-257
-260

+0-260
-259
256
252
-247

+0-243
‘239
237
238
241

+0.246
.251
256
-258
-257

+0-254
-248
242
236
232

+0-229
+0.227

G.S.D.

UNIVERSAL TIME

(Greenwich Transit of the Equinox)

0"G.S.T. Date

245

0z00-0 Jan.

0201-0
0202-0
0203-0
0204-0

0205-0
0206.0
0207%-0
0208.0
0209.0

0210.0
0211:0
0212.0
0213-0
0214.0

02150
0216-0
0217-0
0218.0
0219-0

0220-0
0221-0
0222-0
0223-0
0224-0

0225.-0
0226.0
0227-0
0228.0
0229-0

0230.0
0231:0
02320
0233-0
*0234-0

0235-0
0236-0
0237:0
0238-0
0239-0

0240-0
02410
0242-0
0243-0
0244-0

0245-0
0246-0

Feb.

Apparent

h m 8§
17 19 55-662
17 15 59-756
17 12 03-849
17 08 07-941
17 04 12-031

&N = O

17 o0 16.118
16 56 20.203
16 52 24.285
16 48 28-367
16 44 32:451

10 16 40 36-537
11 16 36 40-626
12 16 32 44-718
13 16 28 48.812
14 16 24 52.906

ooy OV

o]

15 16 20 57.000
16 16 17 01.093
17 16 13 05-183
18 16 09 09.273
19 16 05 13.361

20 16 o1 17-448
21 15 57 21535
22 15 §3 25-622
23 15 49 29-710
24 1545 33-799

25 15 41 37-890
26 15 37 41.983
27 15 33 46.077
28 15 29 50.172
29 15 25 54.268

30 15 21 58.362
31 15 18 02.456
15 14 06.546
15 10 10.635
15 o6 14-721

-

15 02 18.806
14 58 22.891
14 54 26-979
14 50 31.069
14 46 35.162

9 14 42 39-257
10 14 38 43-354
11 14 34 47-450
12 14 30 51-546
13 14 26 55.640

14 14 22 59-733
15 14 19 03.824

0O~ N B W N

Mean

55-886
59-976
04067
08.157
12.248

16-339
20429
24-520
28.610
32701
36-791
40-882
44972
49-063
53-153

57-244
0I-334
05-425
09-51§
13.606

17-697
21.787
25.878
29-G68
34-059

38-149
42:240
46-330
50-421
54-511
58.602
02.692
06-783
10-873
14-964

19-05§
23-14§
27.236
31-326
35-417
39-507
43598
47-688
51779
55-869
59-960
04+050



6.0 PERTURBATION THEQRY
6.1 Concept of Gravitational Potential

We will now consider the deviation of an orbit from the ideal, two
body, inverse square-force field law. In order to do so, we must dis-
tinguish the concepts of empirically correcting orbit calculations due
to a non-perfect two body system, and the actual prediction of orbit
positions based én a physical model which accounts for forces that per-
turb a body from perfect two body motion. The first technique has
received a good deal of study under the general heading of "Differential
Correction'". A discussion of this topic is given in Chapter 9 of EB,
by Dubyago (1961), and by Capellari et al. (1976). The method consists
of bringing a predicted orbit position into agreement with a set of
actual orbit measurements in such a way so as to adjust a set of con-
stant orbital elements to satisfy a new local time period. Thus the
methodology does not necessarily consider the physical reasons why an
orbit is perturbed.

The general area of '"Perturbation Theory" consists of developing
a set of reasonable, time dependent quantities which arise due to
various perturbation fofces, which in turn lead to time dependent ex-—
pressions for the orbital elements themselves. This theory, although
not necessarily adaptable to analytic techniques, has a physical basis
in fact. Since the satellite navigation problem is not really compatible
with the required procedures used in Differential qurection techniques,
we shall address the following discussion to perturbation techniques.

We first need to consider the governing equation in terms of the
concept of potential. Following the approach of Kozai (1959) and

EB and using a spherical coordinate system defined by the earth's

81
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equatorial plane, we define a potential (V):

where:
r = V/xz + y2 + 22 (6.2)

>
and (x, ¥y, 2z) are the cartesian components of a radius vector r ex-
tended from the earth center to an arbitrary satellite position. Taking

partial derivatives with respect to x, y and z yields:

H_:___uKzG_r
§x 2 8x
r
8y r2 Sy
o _ _m r
8z 2 6z
r
and since:
br _x ,8x _y . Sr_z
5x r’8y r’'éz r (6.4)
then:
a2 0x 7 g2 g2 02 (6.5)
or simply:
a%s
€L - v (grad V) (6.6)
dt

Equation. 6.6 thus states that the acceleration of a body is due to the

gradient of what we shall call a potential V.
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If we generalize the problem, it is easily seen that V can be
expressed as a summation of normalized point masses (mi):

n miK2

T, (6.7)
i

M
]
'_l

Now if we consider the earth as a series of concentric (circular)

masses about its center, we see that if we assume an oblate spheroid

(bulging equator), we are considering a non-symmetric force field as

" shown in Figure 6.1. Makemson et al. (1961) have provided a spher-

ic¢al harmonics expansion of the aspherical potential Ve of the earth:
K’n

J

v =2l 1422 (1- 3 sins)
r 2

2r

J
+ —33 (3 = 5 sin26)sind
2r

J4
8r4

(3 - 30 sin®8 + 35 sin%6) (6.8)

J
- —-5—5 (15 - 70 sin26 + 63 sin®8)siné
8r '

J6

l6r6

+ (5 - 105 sin2s + 315 sin*s - 231 sinbs)

+ €

where:

mass of earth in earth mass units = 1

B
It

w
]

the terrestrial gravitational constant
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sin-l(z/r)

(=]
il

[a]
]

distance from the earth center to a spacecraft in e.r.
units

and the Ji's are the spherical harmonic coefficients of the earth's
gravitational potential. Equation (6.8) has been normalized such that
Jl = 1. The term € simply expresses the error due to ignoring higher
order terms. The lower order coefficients have been tabulated by

Makemson et al. (1961) and are given in Table 6.1.

Table 6,1: Harmonic Coefficients of the Earth's
Gravitational Potential

J, = +1082.28 - 1070
J. = ~2.30 - 1070
3 L]

= - . —6
I, 2.12 + 10

_ -6
Jg = -0.20 + 10
Jg = +1.00 - 10°°

Equation (6.8) is actually a simplification of the gravitational
potential of the earth. When considering the departures from symmetry,
there are two kinds of spherical harmonics: 2zonal harmonics (departures
due to the ellipticity of the meridians), and tesseral harmonics (depar-
tures due to the ellipticity in latitudinal cross sections). Only
zonal harmonics are considered in the above expansion. This is a stan-
dard model adopted in general perturbation techniques (see Escobal (1968)
for a discussion of higher order models).

Since we can express the governing equation as:

2

o
Ry

=W, (6.9)

N

dt
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EARTH

©

“ASYMMETRICAL SHELL

Figure 6.1 Depiction of the earth as a sequence of
concentric mass shells
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by differentiating equation (6.8) with respect to x, y, z and using
equation (6.4) we have the equations of motion of a satellite with re-

spect to an oblate spheroidal central body (expressed to order J3):

2
2 ' -K'm x J
dx _ e _ e 322 - 2
i 3 [1 +5 =5 (1 -5 sin"%)
dt r r
] .
+-%-—% (3 - 7sin26)sin6 + o.o]
T
2 sV -K'm_y J
d%’= 6e=_»3e [1+%—§-(1—Ssin25)
dt y r x
593 2
+ 53 (3 - 7sin"6)siné + ..o] (6.10)
r

372 .2
32 3 35 (3 = 5 sin“§)

~
<))
1

7sin26)sin6 + ...]

2 [4
S lef3y,
2 3 LN ]
T
This lays the foundation for considering the motion of a satellite with
respect to an oblate spheriodal central body and under the influence

of additional perturbative effects.

6.2 Perturbative Forces and the Time Dependence of Orbital Elements
A satellite, under the influence of a perfect inverse square force

field law, would have a set of constant orbital elements:

[as e, i, M°9 QO’ wo]



87

devoid of any time dependence. However, due to perturbative forces, the
orbital elements are acted upon leading to shifts or oscillations.

There are a number of effects which can be considered as perturbative
forces:

1. Aspherical gravitational potential

2. Auxillary bodies (e.g. sun, moon, planets)

3. Atmospheric drag

4, Atmospheric 1lift

5. Thrust

6. Radiation Pressure (shortwave and longwave radiation)

7. Galactic particle bombardment, e.g. protons (i.e. solar wind)

8. Electromagnetic field asymmetry
The most important of these effects on earth satellites is due to the
first factor; the aspherical gravitational potential of the earth itself,
Atmospheric drag becomes significant for the lower orbit satellites
(heights less than 850 km).

The aim of general perturbation theory is to develop closed ex-
pressions for the time dependence of the orbital elements. It has been
shown that perturbations possess different characteristics (see Chapter
10 of EB and Dubyago (1961) for a review):

1. Secular variations

2. Long term periodic variations

3. Short term periodic variations
In working with meteorological satellite orbits, we are primarily con-
cerned with non-oscillatory secular perturbations which cause ever
increasing or decreasing changes of particular orbital elements away

from their values at an epoch t, as shown in Figure 6.2,
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“SECULAR VARIATION
LONG PERIOD VARIATION

VALUE OF ORBITAL ELEMENT

Figure 6.2 Three principle types of orbital perturbations

The aspherical grévitational potential of the earth primarily ef-
fects M, Q, and w (where we understand that M, Q, and w without sub-
scripts are no longer constant). The other elements (a, e, i) undergo
minor periodic variations about their mean values due to the aspherical
gravitational potential, but in terms of meteorological satellite or-
bits, are not considered significant. In general, long period varia-
tions are caused by the continuous variance of w whereas short period
variations are caused by linear combinations of variations in M and w.

The general form of the equation of motion in a relative inertial

coordinate system is given by:

dZ;‘ r m g fr T '
12 _ 2 12 2N~ ifC2) i) oo -
Rkl +KZ“‘1 il [zaz,,_ Zal] (6.11)
T12 i=3 25 T1j

where subscript 1 indicates the earth, subscript 2 indicates the satel-~

lite, the summation over m represents accelerations due to all auxillary
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bodies of mass m., (moom, sun, planets), and the bracketed term
represents the difference in accelerations of the satellite and the
earth created by non-vacuum properties of the surrounding environment

' (i.e., drag, lift, thrust, radiation pressure, protomns, electromagnetic

fields). If we tabulate the accelerations due to the non-vacuum

properties:
P P . 2
1, Drag (D’): D = aquaA Vr
. P . P = 1 2
2. Lift (L7): L 4CLpaA Vr

P

t
3. Thrust (T): T =T(t)/{m_ - [ = (tydt}

(o]

P

4, Radiation Pressure (RPP): RP™ = S<W/c

5. Particle Flux (PFP(I)): PFP(t) =L CpppA'Vr2

6. Electromagnetic Effects (EM?): EMP = Fe + Fm

where:
CD = empirical drag coefficient (dimensionless)
CL S empirical 1lift coefficient (dimensionless)

p = density term for atmosphere (pa) or particles (pp)

A = cross section of satellite

Vr = relative motion of satellite with respect to residual
atmosphere.
T(t) = time dependent thrust function
t m = vehicle mass at time of initial thrust
dm _
at (t)dt = integral of vehicle mass flow rate
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S = sensitivity coefficient of satellite (includes the effect
of the radiative characteristics of its exposed surfaces

and its cross~sectional area and has units of area)

W = total irradiance at satellite
¢ = velocity of light
'.Cp = empirical particle flux coefficient (dimensionless -
the tilted arrow for the particle flux term :PFP(¢)
indicates that it is dominated by a point source of
solar protons)
(Fs + Fm) Z unbalanced electromagnetic forces

and note that the first term on the right hand side of equation (6.11)
is given by equation (6.10), we can thus express the force field law,
specifically for a satellite with respect to an oblate spheroidal
earth, in a non-vacuum medium, and affécted by the auxillary bodies

of the solar system.

In terms of meteorological satellites we are generally considering
nearly circular, free flying orbits with altitudes greater than 800 km,
In addition, updated orbital parameters from the satellite agencies can
be expected at a frequency of no greater than two weeks, Given these
boundary conditions, most of the above perturbation terms can be ignored.
The major perturbation effect, of course,.is the non;sphericity of the

earth and the resultant effect on the gravitational potential field.
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The minor terms insofar as meteorological satellites are concerned, are
the lunar effect, atmospheric drag, and solar radiation pressure. 1In
general the minor terms need not be included in orbit propagations that
take place over a one to two week period, if we comnsider the allowable
error bars associated with satellite navigation requirements, That is
to say, ignoring the effect of the minor perturbations does not lead

to position or eﬁhemeris errors significantly greater than the resolu-
tion of the data fields under analysis.

It is important to note that the space agencies responsible for
tracking satellites often include the minor terms in retrieving orbital
elements. This is due to the fact that generalized orbit retrieval
packages have been developed for the extensive variety of operational
and experimental satellites, and missiles rather than retrieval pac-
kages individually tailored to specific types of satellites. The
primary difficulty with treating the minor terms in a satellite navi~
gation model is that the required mathematics does not lend itself to
streamlined analytic calculations, a principle requirement for pro-
cessing the vast amounts of data produced by most meteorological satel-
lite instruments. This is the principle reason for retaining only
the major perturbation effect (asymmetric gravitational potential)
which can be handled in a direct analytic fashion.

Following EB, if we consider the potential of an aspherical earth
(Ve) with respect to the potential of a perfectly spherical earth

(Vp), where:

v

) Kz(me +m )/ (6.12)

K2me Jo 2,93 2
v 1+—, (1-3 sin"§) +——5 (3-5 sin“§)sind+...| (6.13)
r 2r2 2r3
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then the difference in these two potentials can be said to define a

perturbative function (R):
R = V - V (6014)

We can then say the potential Vp gives rise to perfect two body motion
whereas the difference function R leads to perturbations about that

motion, Using the definition for r and §:

r =a(l - ez)/(l + e cosv)
(6.15)

sind = sini -~ sin(v + w)= z/r

we can develop an explicit expression for the perturbative function.

The following equation is then an expansion of R to order J 4:

i 1 .2, .1 .2 }
3 231n1+2 sin“iscos2(v + w)

4
- _.43_ (%) {<—l§5- sin?i - %) sin(v + w)

—g— sinzi-sinB(\) + w)} sini
(6.16)

J 5
35 "4 [a 3 3 2 3 . 4,
—Bas(r){35-7sini+8s1n1

~w

+ sinzi ( - % Sinzi) cos2(v + w)

+ %— sin['i-cosl&(v + w)}]
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Brouwer and Clemence (1961) and Sterne (1960) have provided the
analysis necessary to relate time derivatives of the orbital elements to

deriva}tives in R, These expressions as given by EB are as follows:

da 2 &R
dt na SM

de _ (1-eH) &8 _ M-® &
2

dt na’e M naze Sw
dai _ cosi SR
—=
de na2 Vi-e2sini Su
@ (-eh) R _ 2 8
dt 2 8e na da (6.17)

na e

dQ 1 SR
de na2 Vl-ez sini 81

dw cosi SR V1-e2 §R
de na2 V1-e2sini 81 naze Se

It is now possible to partition the resultant derivatives into secular
components, long period oscillatory components, and short period oscil-
latory components.

If we ignore the oscillatory components (in a, e, and i) we can
then develop secular perturbation expressions for any selected order
of the gravitational potential expansion. It is this process, for
satellite applications, which eliminates the time dependence in a, e,
and i while including it in M, Q, and w. Next note that the time
dependence of an arbitrary orbital element (%) can be expressed as

a Taylor series expansion:
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X = %+ X(t - £ ) + x(t - tc)z/zz T (6.18)

where Xo is the initial value at an epoch to’ and i, i,...., are time
derivatives. Now, if we ignore all but first order time derivatives

and consider only the first order variations of the aspherical gravi-
tational potential (due to J2), we can express the time dependence of

M, @, and w in simple finite difference form with adequate accuracy:

M=MO+M(t—t0)

- 2 . (6.19)
9—Q°+Q(t—to)
W= + w(t - to)

where M = n is defined as the Anomalistic Mean Motion and ﬁ, w are the
first derivatives of Q and w. These expressions, derived in Chapter 10

of EB, are given by:

2
M=T=n [1 + % JZ'Il‘S (1 - % sinzi>] (6.20)
P

J
Q= - <%-—§- cosi) n (6.21)

P

J. ‘

o =<%p—§ [z - % sinzi])'h' (6.22)

which are all functions of a, e, and i, It is impdrtant to note that
as long as the latter 3 parameters remain nearly constant with time, it
is not necessary to apply implicit numerical techniques to the solutions
of equations (6.20), (6.21), and (6.22). However, a principal effect
of atmospheric drag on low orbit satellites is to modify the values

of a, e and i as a function of the eccentric anomaly. This is due to

the fact that the essential effect of drag is to de-energize a satellite
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orbit and thus reduce the dimension (semi-major axis) of the orbit
ellipse. 1In addition, if the initial orbit is highly non-circular, the
variation in the drag effect due to the elliptic path leads to modi-
fication of the orbit inclination. If a low-flying satellite (small
period or high eccentricity) were being considered, time dependent ex-
pressions for the semi-major axis, eccentricity, and inclination should
be included. EB provides a set of expressions for drag induced deri-
vatives of a, e, and i in Chapter 10 of his text, however, to include
these expressions in an orbital solution would require a multiple step
iterative approach to the calculation of the six derivative quantities.
Accordiﬁg to Fuchs (1980), with respect to the satellite navigation
problem, drag induced perturbations need not be considered for meteoro-

logical satellites until orbital altitudes start falling below 850 km.

With equation (6.20) we can define the Anomalistic Period (®):
P = 2n/n (perifocus to varying perifocus) (6.23)
Contrast this with the non-perturbative or mean period P:

P = 2n/n (perifocus to non-varying perifocus) (6.24)
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Expanding to second order variations in potential results in terms

of J2 and J4, where the Anomalistic Mean Motion n is given by:(see EB):
: =nl|l+4 9- J __L—e_z 1 - -3_ £ 2‘
272" 2 g sin 1
P
2
3 .2 Vi-e -—2 2
+ 158 I, T (16\/ -e” + 25(1-e°) - 15
+ [30 - 96 Vi-e? - 90(1-e?)] cos?t (6.25)

2

+ [105 + 144 Vime? + 25(1-e2)] cos“-i)

__45 3 1—e2
128 "4 p4

e2 3 - 30 coszi + 35 cos4i)]

and the Anomalistic Period (P) and the Mean Anomaly (M) are given by:

P = 2n/n
(6.26)
M=Mo+n(t- to)
The first derivative terms 1?7[, S.Z, and (:) are given by:
M=n (6.27)
J J 2
- §372= 3,203 8 2Vie?
Q = {2 2ncosi[l+i-,2{2+6 2 Vli-e
P P
5
- (3— - 2—54 e? - 3 l—ez) sinzi}] (6.28)

2
3574 3 2/12-21 sin"i
+ 8 ——p4 n <l + 2 e >\ 14 cosi
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24 48
\\ sinzl} - 45 J2 e2 n cos41 - ——-iﬁ
36 4 8 4
(6.29)
12 93 . 2 21 4 2427
[7-1—481ni+—?sin:%+e {14

189 . 2, 81 . 4
- —Eg sin"i + 16 sin i}}}

Note that the sign of the expression for dQ/dt (see Equation (6.21))
indicates why orbits must retrograde to achieve a sun synchronous
configuration (eastward precession of ascending node). Since dQ/dt
must be positive and the expression is of the form —[positivelconstant]
*cosi, then the cosine of i must be negative. This requires i > 90.

It is worth comparing the first derivative terms (ﬂ, ﬁ, &) for
the first and second order expansions for both short period polar or-
biting satellites and longer period geosynchronous satellites. Using
typical orbital data we can generate Table 6.2 from the computer routine

given in Appendix B.
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Table 6.2: Comparison of First Derivative Terms for First and
Second Order Expansions (deg/day)

First Order Second Order
Polar Geosynchronous Polar Geosynchronous
n 4985,237053 357,564532 4985.237053 357.564532
M 4982.408922 357.577648 4982.410662 357.577648
& - 990040 -.,013117 .993605 -,013115
@ -2.666695 .026234 -2.664593 .026237

6.3 Longitudinal Drift of a Geosynchronous Satellite

We can now show that a geosynchronous satellite has a { term,
even if the inclination and eccentricity are zero. Setting i = 0 and
using a first order expansion:

V 2
dQ _é.iz_ a 1+.3_J J l-e (6.30)
dt 2 p2 2 2 2

De
1]
l
1

Now since n = K/a3/2 and p = a(l - e2), and if we set e=0, and letting:
3, = 1082.28 « 107°
K = 0.07436574 e.r.>2/min
a = 6.6229 e.r.

then:
da _ .i.iZ.JS__ [1+ Q.J };J
dt  “\2 2/ 3/2 252 2
a a a

-0.01332° day'1 westward drift

(6.31)

This gives rise to the so-called figure 8 orbit track of a geosynchronous

satellite as shown in Figure 6.3,
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/ORBHﬁL TRACK

ana——

1 \ 5 ! , ‘ EQUATOR

Figure 6.3 Figure 8 orbital track of a geosynchronous satellite

6.4 Calculations Required for a Perturbed Orbit

To calculate an orbital position vector, now that M, £, w are no
longer constant requires 2 more steps than the analysis given in:
Chapter 5. Recalling that prior to orbit calculations we determined

the time of perifocal passage (T):
T=t - Mo/n (6.32)

we must now update £ and w to time T since they are no longer constant

parameters; we shall call these new initial terms W and QT:
W, =w_ + (T = t)
T oo ° (6.33)
QT = Qo + Q(T - to)

Finally, instead of considering the transformation matrix B (see
Equation 5.59) as constant, we must calculate w and 2 at the specified

time t:

+ o(t - T)

€
]

W
(6.34)

QT + Q(t - T)

2
I
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and then use these values to calculate the direction cosines for the

transformation matrix B:

B

where:
P_(t)
Py(t)

P_(v)

Q,(t)
Q(t)
Q (1)
W (t)
W, (£)

W, ()

P(6), B (), P,(t)

Q (1), Q (), Q ()

W (6, W(£), W, (0)

il

cosw * cosfl — sinw * sin® ° cosi

cosw ¢ sin + sinw * cos? * cosi

sinw . sini

—sinw ¢ cosfl — cosw ¢ sinQ - cosi

~-sinw ¢ sinfl + cosw ¢ cosf) * cosi

cosw ¢ sini

sinQ ¢ sini

-cos * sini

cosi

(6.35)

(6.36)

This requirement slightly alters the run-time on a computer as shown in

Table 6.3.
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Table 6.3: Difference in Computational Time Between Non-Perturbed
and Perturbed Orbit Calculations (times are given in
relative units (RU) for a CDC-7600: 1 RU = .25 milli-
seconds of CPU time)

No. of Vector Calculations Non~Perturbed Perturbed
1 1.00 1.08
10 9.20 10.00
50 44.00 50.00
100 88.00 100.00

6.5 Equator Crossing Period

There is another satellite period to be considered assuming varying
orbital elements. This is the so-called synodic, nodal, or equator
crossing period, which is very useful to operational tracking stations.

The equator crossing period is most easily defined if we first let:

+
v = 360 =~ o
- (6.37)
v = 180 - W
and use the relationships between E and v:
cos E = cosv + e
1+ e cosv
(6.38)

. _ l—e2 sinv
sin E = ————""-—

1+ e cosv

yielding two solutions E+ and E . By defining v+ and v_ according to
Equation (6.37) we have placed the satellite at its equatorial crossing
nodes. We can now solve for M+ and M :

s HE Sl e sinE+’- (6.39)



102

and since M = n(t - T), we can solve for the times of equator crossings:

+
o2 E g
eqcs n
(6.40)

t
eqcs

where + indicates a northward excursion and - indicates a southward

excursion. Finally, the equator crossing period (ﬁ ) is given by:

+ -
° | eqcs teqcsI

(6.41)
The difficulty with the above approach is that over a half period,
w is varying, so that application of Equation (6.37) is only approximate.
A rather simple solution to this problem is a numerical iterative
approach in which two adjacent equator crossing nodes are found to a
specified degree of accuracy. Appendix C provides a listing of a
routine which will isolate a palr of equator crossings for a perturbed
orbit. By applying the computer codes given in Appendices B and C,
Table 6.4 is generated. This table compares the differences between
the mean period, anomalistic period, and synodic period for both opera-
tional polar orbiter and geosynchronous satellites. Typical orbit data

have been used in the calculations.

Table 6.4: Comparison of Three Satellite Periods (minutes)

Polar : Geosynchronous
Mean 103.987 1440.108
Anomalistic (first order) 104.046 1440,055

Synodic 104.102 1339.935
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Finally, to illustrate the application of a perturbed model,

Figures 6.4 and 6.5 are provided. These figures portray typical orbital
paths of both a geosynchronous satellite (GOES-3) and a polar orbiting

satellite (TIROS-N).

ORBITAL ELEMENTS

PERIODS
P=1436.225min +=JUL 15,1978 0OM42™40° GMT
P=1436.172 min a=42167.339km M, = 307.0778°
P=1436.064min e=0.0002892 0, =276.0909°
i=1.0017° wo =305.3629°
2°N Y T T T T
't 15:00 N
APOGEE ————»’T 12:00
(42179.53km)
IEOO" 9:00 _ ASCENDING NODE
A 4
EQ | — / |
DESCENDING NODE ~ 5.0
6.00 .
PERIGE
000 .U/ (4215514 km
1k 24.00 300 ]
2°8 1 1 1 1 1
138°W 137° 136° 135° 134° 133° 132°W

GOES—3i! ORBIT —JUL 15,1978
(® TIMES GIVENIN GMT)

Figure 6.4 Typical orbital path of a geosynchronous
satellite (GOES-3)
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Figure 6.5 Typical orbital path of a polar orbiting
satellite (TIROS-N)



105

6.6 Required Inclination for a Sun-Synchronous Orbit

Another problem which we can address, is the determination of

the required inclination angle for sun synchronous orbits for a given

orbital period (P). This is simply a matter of requiring Q to be 360

degrees per mean solar year. Now since:

J
% = - —3——% cosi | (6.42)
P
_ Vi 2
h=n [1 + % 1, Le (1-3 sinzi>]= 2 /5 (6.43)
P
2
p=a(l-e") (6.44)
n = 13_‘;—2 K = 2n/p (6.45)
a
We simply require that i satisfies:
360 degrees  _ _3(%2 N |, 3, Vil
365.24219879 days 2\ ;2 ¢ 2727 2
<l - :—;- sinzi> ]
or: (6.46)

.985647336 deg-day® = _%< :
P

[1 + 3 1082.28-10"
2 p

1082.28-10"° )
cos 1 n

6 Yl-e 3 .2,
3 1 -7 sini
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Note that a is assumed to be in cannonical units:
a(e.r,) = a(km)/Re(km)

This equation is easily solved numerically. Since the right hand
gide of equation (6.46) is monotonically increasing as i goes from 90°
to 1800, we can use a Newton's method approach in the interval (900_5
i 5_1800) to isdlate, to a specified tolerance, a solution matching the
left hand side. By applying this procedure, Table 6.5 has been generated
which gives the required satellite height and inclination for a sun
synchronous orbit, given the satellite period. A circular orbit (e=0)

is assumed. A listing of a computer routine is given in Appendix G.

Table 6.5: Required Orbital Inclination for a Sun Synchronous
Satellite Given a Satellite Period (e=0)

Period (minutes) Height (km) Inclination (Deg)
90 274,36 96.5893
100 758.44 98.4366
110 1226.62 100.5585
120 1680.80 102,9718

6.7 Velocity of a Satellite in a Secularly Perturbed Elliptic Orbit
A final problem we might want to solve is the determination of the
velocity V of a satellite in an elliptic orbit at time t., Since we

know:

»
L]

a(cosE - e)
w (6.47)

a¥V¥l - eZ sinE

<
]
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and thus:

-a ﬁ sinE
v (6.48)

a Eoﬂll - e2 cosE

™
I

<
It

and since V is simply:

v = ;;wz + g,wz (6.49)
then:

V = a E YsinE + (1 - ez)-coszE (6,50)

Note immediately that for a circular orbit where e=0:
Ve=a ]::.\/sian + coszE (6.51)
=ak

and since if e=0 then E=M, thus:

V = al (6.52)

Now since:

. A2
M=n|:1+%J ——l_—e—‘<l—ésinzi>] (6.53)

2

and if we ignore the perturbation term then M = n, and we have a velocity

expression for a circular, non-perturbed orbit:

(6.54)

Now rote that since:
(6.55)

n =Vu K/a3/2
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then:
_ a\/ﬁ K _ L.l
V= 3/2 - I\J; ('5.56)
a

which is similar to Equation 5.30, an expression that is independent of
time.

In the case e = 0, we consider the perturbative effects:

V= akVsinZE + (1 - e2)*cos’E (5.57)
using:
E=M+ e*sinM :
. . (5.58)
E = M(1 + e+cosM)
where:
— 3. Vi-e? 3,2 (5.59)
M—n—n[l+§J2 z(l—iﬂng]
P
and:
M=n(t -T)
n = .\/‘1 K/a3/2
(5.60)
p=a(l - e2)

J, = 1082.28 - 1070

Thus we have solved for V as a function of time, knowing only the orbital

elements.



7.0 THE ORBITAL REVISIT PROBLEM
7.1 Sun Synchronous Orbits

Does a satellite pass over the same point on each orbit if it is
sun synchronous? It would, only if the equator crossing separation
is an integer factor of 360°. For example:

1. Assume a 60 minute period. After 1 orbit period, the earth
would rotate 150-underneath the satellite., This would continue 24 times
until the satellite was back to exactly the same point that it started.

2, Assume a 120 minute period. In this instance, there would be
a 30° equator crossing separation. Therefore since 360/30 = 12 is
an exact integer, the satellite would return to the same point.

Tables 7.1 and 7.2 are useful,

Table 7.1: Orbit Crossing Separations up to 90°

Integer Number

Period Longitudinal Separation of Orbits
20 min x 15°/60 min = 5°  which divides 360° 72 times
40 min "o 10° " 36 times
60 min " 15° " 24 times
80 min " 20° : " 18 times
120 nin " 30° " 12 times
160 min " 40° " 9 times
180 min " 45° " 8 times
240 min " 60° " 6 times
360 min " 90° " 4 times
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Table 7.2:

Period

60.0 min
62.60870 min
65.45455 min
68.57143 min
72.0 min
75.78947 min
80.0 min
84,.70588 min
90.0 min

96.0 min
102.85714 min
110.76923 min
120.0 min
130.90909 min
144.0 min
160.0 min
180.0 min
205.71429 min
240.0 min
288.0 min

360.0 min

X 150/60 min

11

1"

110

Longitudinal Separation

15.0°

15,65217°
16.34364°

17.14286°

18.0°

18.94737°

20.0°

21.17647°

22.5°

24.0°

25.71429°

27.69231°

30.0°

32.72727°

36.0°

40.0°

45.0°

51.42857°

60.0°

72.0°

90.0°

Complete Table for Orbit Crossing Separations
with 1 to 6 Hour Periods.

which divides 360°

1

1"

"

"

"

"

Integer Number
of Orbits

24

23

22
21
20
19
18
17
16
15
14
13
12
11

10

times
times
times
times
times
times
times
times
times
times
times
times
times
times
times
times
times
times
times
times

times
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3. Now consider a period which results in a longitudinal separation
which does not divide 360° an integer number of times, such as 100 min-
utes. Then 100 x 0.25 = 25 degree longitudinal crossing, which divides
360° exactly 1l4.4 times. If we let the first crossing occur at 0°
longitude (Greenwich Meridian), Table 7.3 gives the equatorial cros-

sing sequence,

Table 7.3: Equator Crossings for a Non-Integer Separation Factor

Orbit Number Equatorial Crossing Longitude
0 o°
1 25%
2 50°W
Q.
CYCLE 1 3 3
13 325% (35°E)
14 350°W (10°E)
15 15%
16 40%
CYCLE 2 '
27 315% (45°E)
28 340%W (20°E)
29 5%
CYCLE 3 ; :
42 330% (30°E)
43 355%w (5%E)
44 20%
CYCLE &
57 345% (15°E)
58 10%
CYCLE 5
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Note that it takes 5 complete orbital cycles or 72 orbital periods

until the pattern repeats. It is easy to see why this gets more com-

plicated if the period is something like 101.358 minutes. Basically, to

determine how many cycles are required to repeat the sequence, the

smallest integer (I) must be found such that:

Ix P(period) = agnother integer

Thus, in order to find I:

1.

3.

Calculate the orbits per cycle (N):

N = 360/(0.25P) where the period(P) is in minutes.
Now N is given by:

N = n1n2n3n4...
Take the decimal portion and divide it by a power of 10
corresponding to the number of places in the decimal portion
at a preferred decimal accuracy.

Simplify that fraction to its least common denominator (LCD).

The LCD is the smallest integer I. Example:
Assume an orbit of 110 minutes., How many cycles and orbits
mus; pass before the orbit pattern repeats itself?

N = 360/(0.25 = 110) = 13.09090909...
Let us make our calculation accurate to 4 decimal places,
thus:

N = 13.0909

Take the decimal portion 0909 and divide it by 10,000,
yielding 909/10,000. Since any power of ten (109) can be

given as the multiples of its prime factors, i.e.,

9 _ 9. ,9

10 57 « 27, then the numerator 909 would have to be
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divisible by 5 or 2 to have a lower least common denominator.
Thus, in this case, 10,000 is the LCD because 909 is not
divisible by 2 or 5. Therefore, it would take 10,000 cycles
or 130,909 orbits for the orbit pattern to repeat itself to
within 4 decimal place accuracy.

Also note that even though the orbit pattern of a sun-synchronous
satellite does not repeat every cycle, this does not make it any less
sun-synchronous. It simply pseudo-randomizes the equator crossings.
Actually, there is a predictable phase pattern to the equator crossing
changes although it can be considered as a randomizing process.

7.2 Multiple Satellite System: Mixed Sun-Synchronous and Non-Sun-

Synchronous Orbits

In order to achieve uniform spatial and temporal sampling, future
satellite systems will include various sun-synchronous and non-sun-
synchronous satellites. The basic problem is to design an orbit con-
figuration which will yield an optimal revisit frequency over all parts
of the globe. Since the topic of diurnal variability has become such
an important consideration in radiation budget studies, future satellite
éystems cannot afford to provide only twice a day coverage of the globe.
The most successful technique which has been used to design the orbit
architecture for a multiple satellite system is the computer simulation
of multiple satellite orbits. By "'flying satellites" in a computer,
the revisit frequencies for a global spatial grid can be computed for
a variety of orbital parameters. Campbell and Vonder Haar (1978) used
this approach for the specification of the optimal orbit inclination
for a system of polar-orbiting satellites designed to measure the

earth's radiation budget. Circular orbits were used in their analysis.
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It should be recognized that when considering polar orbiting
satellites, an analysis of the revisit problem must include not only
the orbital period but also the scanning pattern of the satellite in-
strument. As the satellite height increases, the period increases and
thus the longitudinal separation of equator crossings increases. A
fixed nadir viewing instrument would miss global strips (swaths) to
the east and weét of the orbital track as the satellite height is in-
creased. If a satellite instrument is designed to scan across the
orbital track, the longitudinal separation can be increased up to the
point at which the atmospheric path length would have to be considered.

Essentially, the solution of the orbital revisit problem should
be an attempt to sample the three dimensional volume: latitude, longi-
tude and local time. Polar orbiters with inclinations near 90° would
sample all latitudes and longitudes in a time period of approximately
one month, However, only a very narrow local time interval would be
sampled because of the slow precession rates. Satellites with lower
inclination orbits such as 300, would precess rapidly (about 5° per
day) for an 800 Km altitude orbit, sampling 12 hours in a month. Com-
puter simulations indicate that a set of satellites at 80° and-SOo,

o’ and 50o inclinations would provide nearly optimum sampling

and 80°, 60
for two and three low orbit satellite systems, respectively (see
Campbell and Vonder Haar, 1978). The geosynchronous satellites are
examples of satellite platforms which provide fixed spatial and angular
sampling but can provide high temporal sampling.

Another factor which must be included in the analysis is the quan-

tity which is being measured. For observations of emitted flux, obser-

vations at any time of day generally provide good results. However,
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when considering albedo measurements, observations at night are useless
and observations near sunrise or sunsef (local times 600 and 1800) are
very difficult to analyze because of the high solar grazing angles.

Any variation of the observed field must also be considered in the
orbital design. For radiation budget purposes, a set of 80Q, 50° and
sun~synchronous satellites is better than an 80°-60°-50° set. The
sun—synchronous.orbit should be located at some local time between 900
and 1500 so as to provide uniform quality albedo estimates. The
drifting orbiters are able to measure the diurnal variations. There
are, of course, additional requirements for which orbits at other times
of the day might be more useful. For example, in order to observe the
earth's surface, an orbit at 8:00 am local time might be best since

there are generally fewer clouds to obscure the ground.



8.0 CONCLUSIONS

This investigation has been directed toward the study of the orbit
properties of near earth meteorological satellites, and in particular,
the application of the results to the satellite navigation problem.
Beginning with some basic definitions of time and coordinate systems,
the basic foundation for the solution of the two body Keplerian orbit
was outlined. Tﬁis solution was adapted to the conventional orbital
element parameters available from the meteorological satellite agencies
so as to develop computer models for calculating orbital position vec-
tors as a function of time, This is a fundamental requirement for any
analytic satellite navigation model.

The invariant two body solution was then extended to a perturbed
solution in which the time variant nature of an orbit was considered.
Using a formulation called the perturbation function, derived from a
harmonic expansion of the earth's gravitational potential, a set of
closed form time derivatives of particular orbital elements were
examined. From these definitions, it was possible to examine various
orbital characteristics of near earth satellites.,

Next, a discussion of the orbit revisit problem was provided as
a means to highlight the significance of exact computer solutions to
the orbital properties of meteorological satellites. Finally, a set
of computer codes for calculating orbital position vectors and various
orbital period quantities is provided in the appendices. The input to
these routines is based on the "Classical Orbital Elements' available
from the operational satellite agencies. A brief description of the

source of these elements is provided in Appendix A.

116



9,0 ACKNOWLEDGEMENTS

I would first like to express my gratitude to Dr. Dennis Phillips
who was-a colleague of mine at the University of Wisconsin's Space
Science and Engineering Center, during the period 1966-1974. His in~-
sight and planning spearheaded the development of the first successful
geosynchronous satellite navigation model which we ultimately completed
in 1972, 1t Was‘from.my discussion with Dr. Phillips and his guidance
in transforming the mathematical descriptions of satellite orbit pro-
perties into workable computer code, that I first developed an appre~
ciation for analytic navigation techniques. I must also acknowledge
Mr. Jim Ellickson of the National Environmental Satellite Service and
Dr. Art Fuchs of the NASA Goddard Space Flight Center for their helpful
discussions in preparing Appendix A, I am indebted to Professor Thomas
Vonder Haar for his generous assistance in planning the manuscript and
Mr. Garrett Campbell for valuable discussions on the orbital revisit
problem, Finally, I express my warmest regards to Laurie Parkinson for
her excellent care and patience in preparing the manuscript and Mark
Howes for his very fine drafting assistance.

The research was supported by the National Science Foundation
under Grants ATM-7807148 and ATM-7820375 and the Office of Naval Re-
search under Contract N0O0014-79-C-0793. Computing support and ser-
vices wefe provided by the National Center of Atmospheric Research

which is supported by the National Science Foundation.

117



10.0 REFERENCES

Abramowitz, M., and I. A. Stegun, 1972: Handbook of Mathematical
Functions., Dover Publications, Inc., New York, 1046 pp.

American Ephemeris and Nautical Almanac, 1978: Issued by the Nautical
Almanac Office, U.S. Naval Observatory and Her Majesty's Nautical
Almanac Office, Royal Greenwich Observatory, U.S. Government
Printing Office, Washington, D.C., 573 pp.

Bowditch, Nathaniel, 1962: American Practical Navigator - An Epitomie
of Navigation. U.S. Navy Hydrographic Office, H.0. Pub. No. 9,
U.S. Govermment Printing Office, 1524 pp.

Brouwer, D., and G. M. Clemence, -1961: Methods of Celestial Mechanics.
Academic Press, New York, 598 pp.

Campbell, G. G., and T. H. Vonder Haar, 1978: Optimum Satellite Orbits
for Accurate Measurement of the Earth's Radiation Budget, Summary.
Atmospheric Science Paper No. 289, Department of Atmospheric
Science, Colorado State University, Fort Collins, CO, 61 pp.

Cappellari, J. 0., C. E. Velez, and A. J. Fuchs, 1976: Mathematical
Theory of the Goddard Trajectory Determination System. Technical
Report X-582-76-77, Goddard Space Flight Center, Greenbelt, MD,
599 pp.

Ellickson, J., (1980): Personal Communication.

Escobal, P. R., 1965: Methods of Orbit Determination. John Wiley and
Sons, Inc., New York/London/Sydney, 463 pp.

Escobal, P. R., 1968: Methods of Astrodynamics. John Wiley and Soms,
Inc., New York/London/Sydney, 342 pp.

Fuchs, A. J., (1980): Personal Communication.

Kozai, Y., 1959: The Motion of a Close Earth Satellite. The
Astronomical Journal, 64, 9,

Makemson, M. W., R. L. M. Baker, and G. B. Westrom, 1961: Analysis
and Standardization of the Astrodynamic Constants., Journal of
the Astronautical Sciences, 8, 1, pp. 1-13.

McGraw-Hill, 1974: Dictionary of Scientific and Technical Terms.
McGraw-Hill Book Co., New York/St. Louis/San Francisco, 1634 pp.

Phillips, D. R., 1979: Incorporation of Star Measurements for the
Determination of Orbit and Attitude Parameters of a Geosynchronous
Satellite. Presented at the 4th Annual Flight Mechanics/Estimation
Theory Symposium, Oct. 15-18, NASA Goddard Space Flight Center,
Greenbelt, MD.

118



119

Smith, E. A., and D. R. Phillips, 1972: Automated Cloud Tracking
Using Precisely Aligned Digital ATS Pictures. IEEE Trans. on
Comp., C-21, pp. 715-729,

Spiegel, M. R., 1968: Mathematical Handbook of Formulas and Tables.
McGraw-Hill Book Co., New York/St. Louis/San Francisco/Toronto/
Sydney, 271 pp.

Sterne, T. E., 1960: An Introduction to Celestial Mechanics.
Interscience Publishers, New York, 206 pp.

Widger, W. K., 1966: Orbits, Altitudes, Viewing Geometry, Coverage,
and Resolution Pertinent to Satellite Observations of the Earth
and Its Atmosphere. Technical Report: Contract No. N-61339-66-
C-0031, U.S. Naval Training Device Center, Port Washington, NY,
PP. 489~537.,



120

APPENDIX A

EXAMPLES OF NESS, NASA, ESA, AND NASDA ORBITAL ELEMENT TRANSMISSIONS



121

APPENDIX A

EXAMPLES OF NESS, NASA, ESA, AND NASDA ORBTITAL ELEMENT TRANSMISSIONS

Classical Orbital Elements for meteorological satellites are, in
general, provided by the operational satellite agencies, i.e., NESS,
NASA, ESA, and NASDA. Although actual satellite tracking data may be
provided by other agencies such as the North American Air Defense Com-
mand (NORAD), the reduction of this data to the conventional elements
is under the management of the operational space agencies., Before
providing examples of orbital element transmissions for various satel-
lites from these agencies, a brief explanation of the format is re-
quired, As discussed in Chapters 5 and 6, the standard elements include:

1. Epoch Time (to)

2, Semi-major Axis (a)

3. Eccentricity (e)

4, Inclination (i)

5. Mean Anomaly or True Anomaly ( Mo or vo)

6. Right Ascension of Ascending Node (Qo)

7. Argument of Perigee (mo)

In the discussion of Chapters 5 and 6, these elements were referred to
as "Classical Orbital Elements' although in actuality, the space agen~
cies refer to the above set of elements by other names, The three
basic categories of orbital elements that appear on standard orbital
transmission documents are as follows:

1. Kepierian Elements

2. Osculating Elements

3. Brouwer Mean Elements
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There are no differences in the definitions of the classical
eiements insofar as the above categories are concerned, however, there
are differences in the time varying properties of orbital elements with
respect to the three categories. Referring to the Orbital Elements
as Keplerian, implies that pure unperturbed two body motion is under
consideration. Referring to the Classical Elements as Brouwer Mean
Elements implieslthat time derivatives are involved with respect to
various elements and that the elements themselves are based on Brouwer
theory (see Brouwer and Clemence, 1961) or Brouwer-Lyddane theory
(see Cappellari et al., 1976). Keplerian or Brouwer Mean elements are
the standard products of the operational space agenéies. The model
developed in Chapters 5 and 6 incorporates the basic physics considered
in Brouwer or Brouwer-Lyddane theory but uses a different formulétion,
see Kozai (1959) or EB (1965).

Referring to a set of elements as Osculating Elements can lead to
some confusion. We say, in general, that an orbit osculates (kisses)
an instantaneous position and velocity vector. In this sense, various
sets of elements compatible with the various orders of perturbation
theory could propogate an orbit which kisses or osculates a pre-defined
position-velocity constraint which is known to define an orbit. When
the space agencies label a set of orbital elements as osculating, they
are indicating that the elements used in a Keplerian theory will os-
culate a position-velocity constraint which could have been based on
two-body theory or perhaps a perturbation theory applied to raw trac-
king data used to generate the ephemeris comstraint. Therefore os-
culating elements can be considered as Keplerian elements, although the

elements themselves may represent a fit to ephemeris data based on any

number of perturbation models.
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The above points may.seem academic in terms of reducing tracking
station data to a set of orbital elements, however, the distinction is
very important. It is instructive to discuss this statement by example.
We will consider the approaches used by NESS and NASA in their genera-
tion of orbital elements for TIROS-N, GOES, and Nimbus-7 satellites.
TIROS-N, which is a NESS operated polar orbiting satellite, is radar
tracked by NORAD. In addition, NORAD reduces approximately a week of
tracking data to a set of orbital elements which are compatible with
the NORAD perturbation model (the model itself is classified). Pertur-
bation factors included in this model include zonal and meridional
asymmetries in the earth's gravitational potential, lunar forces, at=-
mospheric drag, and solar radiation pressure. The retrieved orbit ele-
ments are then used to propogate approximately 3 weeks of ephemeris
data which are transmitted to NESS, who in turn, retrieves either
Keplerian Elements oY Brouwer Mean Elements based on unperturbed two
body theory or Brouwer-Lyddane theory. The orbit retrieval package is
based on sub-systems of the NASA Goddard Trajectory Determination Sys-—
tem (GIDS) which is a large computer package designed for a vast array
of NASA orbital problems, and is developed and maintained by the NASA
Goddard Space Flight Center. Therefore, NESS can provide either un-
perturbed or perturbed model elements, but it must be recognized that
these elements represent fits to model produced ephemeris data, not
raw tracking data (see Ellickson, 1980).

The retrieval of GOES-East and GOES-West orbital elements takes
place at both NESS and NASA. - The NESS produced elements are based on
approximately one week of tri-lateration (3 station) ranging data

generated by the 5 NOAA operated tracking stations (Wallops Island, VA;
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Seattle, WA; Honolulu, HI; Santiago, Chile; Ascension Island). The
type of model used to fit the ranging data is based on unperturbed
two-~body motion, so by definition, the NESS produced orbital elements
for GOES are Keplerian., NASA, on the other hand, bases its orbit re-
trievals on range and range-rate data available from its own global
network of tracking stations. Unlike NESS, NASA uses the GTDS per-
turbation modellto retrieve orbital elements which are then used to
propogate an ephemeris stream. These model data are finally fit by a
Keplerian model to produce a set of elements which osculate a position-
velocity vector pair which best characterizes a two body orbit. NASA
then transmits these elements under the heading of Osculating Elements,
although it is understood that they are Keplerian Elements. NASA

uses a very similar procedure for producing Nimbus-7 orbital elements,
however, the elements derived from the model ephemeris stream are
Brouwer Mean Elements based on Brouwer-Lyddane theory.

The following ten cases are examples of various orbital trans-
mission documents from four operational space agencies (NASA, NESS, ESA,
JMS) for the following seven different satellites:

1. GOES-2 (Eastern Geosynchronous)

2. GOES-3 (Western Geosynchronous)

3. GOES-1 (Indian Ocean Geosynchronous, also called GOES-A)

4, METEOSAT (European Geosynchronous)

5. GMS (Japanese Geosynchronous)

6. TIROS-N (NESS Polar Orbiter)

7. NIMBUS-G (NASA Polar Orbiter)
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CASE 1: GOES-2: ©NASA Transmission

TWX022...8 710-828-9716

LE GWKY G40
C2/0&182
Fi MISSION AND DATA OFEFATICNS NASA GSFC GREENEELT ND
TO GSRH/NAVSPASUR CAKLGFEN VA
GSPM/NCFAD COC CEEYENEE MTN COMPLEX CO/COFSO ATTH CHIEF ALALYST
GSFM/VILHELY F STEFNVARTE BEFLIN W GERMANY ATTN ZIMNER
LSRti/FAE FAPNEOPCUGH ENGLAKD ATTN KIKG-HELE SPACE LEPT

GSTS/JCE JOKNS COLE- 933/VILLINGHAM CODE 572/PETRUZZO CODE 56!
GSTS/IAFSE CODE 490 o
CPCR/FFCGKCOPCHAK . .

GSTS/UNIV OF WISCONSIN COLLECT TWX 910-286-2771
GTOS/SOCC/MCINTOSH/ SHARTS

GSRM/PUVCMSA/MILLSTCNE HILL WESTFORD MA ATTN SPILHAPAN
GSRil/RUVJHTA/YEITE SANDS MISSILE RALGE KM ATTN MEYEES

GSEN/AFCTL MANSCGM AFE EECFURL MA ATTN SUYA/HUSSEY

GSRM/RUWTCPA/SEL EQULDER CO ATTHN SCHOEDER/NBS BCULDER CC ATTN U HANSCH
GSTS/COMPUT - . - . . .

THE FOLLOWING AFE THE OqCULATING OREITAL ELEMENTS

FOP SATELLITE 1977 4BA GCES-2

COMPUTELD AND ISSUEL BY THE GCLCCARD SPACE FLICHT CENTER.
EPOCH 72 Y €2 ¥ 23 L 00 H 00 M 0.C00 S UT.

SEILI-MAJOR AXIS . 42432.7798 KILOMETERS
ECCENTRICITY . ] «006227 | . :
INCLIRATICN ) ' ) 0.0271 DEGREES
MEAN ANOMALY ) 309.5886 LCEGREES
ARGUMENT CF PERIGEE . 331.4553 TCEGREES
MOTION , PLUS . 0.0262 [L[EG. PER LAY
‘ReA. OF ASCEND. NODE 148.3225 TLCEGREES
MOTICN MINUS G.0131 CPLEG. PER DAY
ANOMALISTIC PERICD 1449 .81255 MINUTES
HEIGHT OF PERIGEE 35790.43 LILOMETERS
HEIGHT OF APQOGEE . 36318.85 XILOMNETERS
VELCCITY AT PEERIGEE 111063+ KM. PER HE
VELGCITY AT APQGE o 16965. Kl1. PER HR.

GEOC. LAT. OF PEFIGEE MINUS G.013 DEGREES
INEFTIAL COORLCINATES REFERENCE TRUE (OF DATE

% 14696.5485 KILOMETERS
Y . 39513.8631. XILCHETERS
z : -19.6313 KILOMETERS
X DOT ) .. -2.EB21 KM. PEF SEC.
Y DOT C 1.078f KM. PEF SEC.
z poT . . : 0.0003 KM. PER SEC.

02/0819Z MAR GWWW
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Case 2; GOES-2; NESS Transmission

TWNC19.e e 710-82E-9716

CE GTOS CO07
€1/,1630Z )

FM SOCC/MCINTOSH

TO GMOC

GPHY . o

GPORB/M PROKCPCHAK . .
GSRM/RMYPMOA/NORAD COC CHEYENNE MTN COMPLEX CO/DOFO CHIEF ANALYST
GSEM/RUVTGPA/J SCHROELER, SEL EBOULDER/W HANSON, NES
GSRMN/RUVOMSA/MILLSTOLE HILL WESTFORD MA ATTN SKIDHARAN
GSEM/RUECFFA/AFGL HANSCOM AFE MA LYS/B MEYERS, SUA/POBINSON
GSTS/B RICHARLCSON WILLINGHAM CODE 572

GSTS/R MARSH . CODE 490 -

GSTS/PHIL FEASE COLE 933 .
GSTS/UNIV OF WISC SPACE SCI AND ENGRNG CENTER TuX 910 286-2771
GSTS/COLO ST UNIV DEPT OF ATHMOSPHERIC SCIENCE TVX 910-930-9008

CSU LIBRFARIES ' ' ‘

/SUS DUPE/ . I
PREPICTED POST MANEUVER

ORBITAL ELEMENTS FOR GOES;Z

EPOCH 79Y 02M 28DAT 04H 28MIN 24SEC UT
SEMI-MAJOR AX1S (Kﬁ>' 421644189
FCCENTRICITY  0.000156

INCLINATION (DEG) 0.0S9 _

. A. OF ASC. NODE (DEG) 144.047 B
ARGUMENT OF PERIGEE (LEG) 138.064 .
MEAN ANOMALY -(DEG) 202.303

LONGITUDE (DEG VEST) 100.0
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Case 3: GOES-3:; NASA Transmission

TWYCCS.s 71C-EEE-5T16

LE YWY 037
10720362

71t 1.ISSION AKD TATA GPEFATICNS KASA c=Fc GFEEWEELT KD
TC CSEN/LAVEPASUER TAELCFEEN VA .

ESBM/NCPAD COC CHEYENKE WTN CONPLEX CO/LOFSC ATTR CHIEF AlAuYQT
GSPH/VILKELL F STESM/AETE FEFLIE V CEFMAKY ATTN ZILLER

LSENM/BAE FAENBOPOUGE ENGLAKL ATTN KING-HELE SPACE LEFT

GSTS/F NAFSK CODE 490/E WILLINGHAN COLE 572/5 RICHARLSON.CODE 572
GSTS/C. PETPUZZO COGLE 581/J. JCHKS CODE 933 A i -
GSTS/UNIV OF VISCCNSIN COLLECT TWX 910-266- 2771

GPGE/N. PPOXGPCHAK ° .- . . -

GTOS/SGCC/HCINTOSH .. -
GSFN/RUMONMSA/NILLSTONE FILL WESTFOED MA ATTN SRILHAFAN
GSEN/PUWJHTA/VEITE SANDS #1SSILE EANGE NN ATTH LEYERS

CSFM/AFGL HANSCOMP AFE PECFORD MASS ATTN,SUA/ROZINSON,LY/EYERS
GSRM/RUYGTPA/PCULCER CO ATT SEL/SCHROEDER, NES/HANSON -
GSEN/FUNJHTAZVEITE SANDS ISSLE TANGI/XPD ATTN CLAP 26ALS
CSTS/CTNPUT : - RN S

TEE FOLLOVIKG APE THE OSCULATING OFZIiTAL ELEKENTS

FCR SATELLITE 1678 5E2A GCES-3 |

CCMPUTEL ARC 1SSUED EY THE GCDLARL SFACE FL’ChT CERTER.
EPOCH 78 Y. 07 ¥ 09 © 18 K 20 ¥ (C.0C0 S UT.

SEMI-MAJOR AXIS - - ,42237.1011 KILCHETELS
ECCENTRICITY = FE o o D §-% £ .
INCLINATION - »',_; B 1.0121 CEGREES
LEAN ANOMALY™ s P 352.7205 TREGREES
GULENT CF papxczz ©. . ¢ 162.6745 TEGREES :
. MOTIGN - - : PLUS - - - '~ 0.0267 LEG. FER DAY"
Z.A. OF ASCEKD. NOCE.. | 275.54%54 LDEGRZES - -
- MCTION = nIRUusS = 77 © 0.0133 LEG, PER DAY
ANOMALISTIC PEFRIOD C 1436.788£3 MINUTES ...
FERIGL DGT S NIN: PEF DAY
HEIGHT CF FERIGEE - : 35792.55 KILOMETERS .
HEIGKET OF APCGEE . 355%5.32 KILOEETERS-.
VELCCITY AT PEFIGEE ~ - -~ .11C77. KM. PEE HKR.
VELOCITY AT APOGEE . , 11042. kM. FEE KR.

GEOC. LAT. OF PERICGEE PLUS 0.301 L[EGERZES,

1C/e056Z JUL GUWW

Case 4: GOES-3: NESS Transmission

ORBITAL ELEMENTS FOR GOES 3 ,SATID 7806201
EPOCH 78Y 07M 1SD AT OOHR 42MIN 40SEC UT
SEMI-MAJOR AXIS- 42167.339 KM
ECCENTRICITY 0.0002892
INCLINATION 1.00173 DEG
Re A. OF ASC. NODE 276.090% DEG
ARGUMENT OF PERIGEE 305.3629% DEG
MEAN ANOMALY 307.0778 DEG
LONGITUDE 134.6859 DEG W
ATTITUDE - SPIN VECTOR
Re As. - 14.383 DEG
DECLIN- -88.707 DEG :
SPIN PERIQOD/RATE- 0. 60000 SEC 7/ 100, 0000 RPM

17/18172 JUL 78 GTOS
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Case 5: GOES~1: NASA Transmission

TWX005...710-528-9716

DE GWWW 027°E

30716112

FM MISSION AND DATA OPERATIONS NASA GSFC GREENBELT MD

TO GSRM/NAVSPASUR DAHLGREN VA

GSRM/NORAD COC CHEYENNE MTN COMPLEX CO/DOFSO ATTN CHIEF ANALYST
GSRM/WILHELM F STERNVARTE BERLIN W GERMANY ATTN ZINMMER
GSRM/AFGL HANSCOMB AFB BEDFORD MASS ATTN SUA/ROBINSON.LYS/B- MEYERS
GSRM/RUUTGPA/NBS BOULDER CO ATTN HANSON

LSRM/RAE FARNEOROUGH ENGLAND ATTH KING-HELE SPACE DEPT
GPOB/PROKOPCHAK

GSTS/BRYANT CODE S81/WIRTH CODE 490/WILLINGHAM CODE 572
GSTS/UNIV OF WISCONSIN COLLECT TWX NR. 910-286-277!

GTO0S/S0CC/L RANNE

GSRM/RUWONMSA/MILLSTONE HILL WESTFORD MA ATTN SRIDHARAN’
GSFPM/RUWJHTA/B. MEYERS WHITE SANDS MISSILE RANGE, N. MEX
GSRM/RUWJHTA/OLAP 26ADS WHITE SANDS MISSILE RANGE NM/XPD
GSTS/JOE JOHNS CODE 933

LESR/PALLASCHICE, K. AUBECK

GSTS/COMPUT

THE FOLLOWING ARE THE OSCULATING ORBITAL ELEMENTS ' ‘
FOR SATELLITE 1975 100A GOES~A COMPUTED AN |
COMPUTED AND ISSUED BY THE GODDARD SPACE FLIGHT CENTER.

EPOCH 76 Y 10 M 27D OH O M 0.0 s UT.

SEM1-MAJOR AXIS 42113.5688 KILOMETERS
ECCENTRICITY - +000820 :
INCLINATION 0.1106 DEGREES
MEAN ANOMALY ) * 8146045 DEGREES
ARG+ OF PERIFQOCUS 20.7101 DEGREES
MOTION PLUS 0.0269 DEG. PER DAY
R.A. OF ASCEND. NODE 274.7950 DEGREES
- MOTION MINUS 0.0135 DEG. PER DAY
ANOMALISTIC PERIOD " 1433.42979 MINUTES
PERIOD DOT ] ' MIN. PER DAY
ET. OF PERIFOCUS . 35700.891 KILOMETERS
HT. OF APOFOCUS 35769.967 KILOMETERS
VEL. AT PERIFOCUS 11085+ * KM« PER HR.
VEL. AT APOFOCUS 11066+ KM. PER HR.
GEOC. LAT OF PERIFOCUS PLUS 0.037 DEGREES

A0s16112 OCT GWWW
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Case 6: GOES-1l: ESA Transmission
(During the FIRst GARP Global
Experiment — FGGE)

t:° LESP/CFE ATT, ESCC e

TO GAQD

. LPFN/G LAZMMEL, LFVLR CEBEPPFAFFENHCFEN
LPFN/NOC CPS, LFVLP
LPFFK/0RE COMP, CFVLE
LPFN/G FATTEl, L[FYLR OBERPFAFFENILIQFEN
GTOS/F KALKWAJY, NOAA-NLESS
GTOS/P EYCLESEFIHNEP, ‘NOAA-IWESS
GCEN/ROCC ) ) .
CLD/ T 0 HAIG, UNIVERSITY OF WISCOMNSIN TLX $10-286-2771
CLL/ SITEQOMN, LMD ECOLE PCLYTECHNIQUE PARIS -TLX 691566
CLO/FE LASBLEIZ, CMS LARNION . -TLX 950256
CLD/G FEFRAND, EOPO TOGULOUSE -TLX 520862

INFC DLD/NMIN AUFECK, GARLNER, LAUE, MUENCH, PALLASCEKE, ROTH,
’ NETWOEK, SCHEDULING, SPACON, ESCC )

DLD/A LUKASIEWICZ, RELU

DLD/P ESTARIA, VILEPA - -TLX 42555

OREITAL PAFAMETEPS FOP GCES-A (7510001)> RUN NUMEER 22

35769.562065
35612.069578
42166.960521

CERIVED ELEMENTS HEIGHT OF PEFIGEE (XM)
.. " HFIGHET OF APGGEE .(KM)
SEMI MAJOP AXIS (KH)

! ECCENTRICITY ) = 000504
IRCLINATICN (CEG) =" < 171442
ASCENEING NOLE (LDEG) = 77.228633
ARG. OF PERIGEE (LEC) =, 125.2446%]

TRUE ANOMALY (DEG) 3.044481

- CCMPONENT (KM)

STATE VECTOFR X = -37811.384898
Y - CCMPONEKRT (KM) = -~18€20.453813
Z - COMPONENT (KM) = 98.024500
¥ - COMPONENT (HM/SEC) = 1.356878
Y - COMPONENT (KI4/SEC) = -2.759605
. Z - COMPONENT (KN/SEC) = -.005791
EPOCE (UT) . 79 YR 2 MO 19 rA ¢ HO 0 NI 000 SE

CPRIT NUNFEFP 217.35863
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Case 7: METEQSAT: ESA Transmission

NR23  RR ESOC  DARMSTADT  ALLEAMAGNE  APR 18/15%41
FH LESR/ORB ATT, ESOC

T0 Eg?D '
R/G LAEMMEL, DFVLR OBER
LPFN/NOC GPS. DFYLR PAFFERHOFEN
LPFN/ORB COMP, DFVLR
6STS/6 MARECHEK, CODE 572,3 GSFC
6STS/R SCLAFFORD, CODE 861,2 GSFC
GCEN/NOCC
6T05/NDAA
GOPS/OPERATIONS CENTRE BRANCH CODE 512 GSFC

INFO DLD/MM BERLIN, KUMHMER, MUENCH, PALLASCHKE, ROBSON, ROTH,
S00P, WALES, NETWORK, SCHEDULING, ESOC
DLD/A LUKASIEWICZ, REDU

DLO/MR P SIBTON, LMD ECOLE POLYTECHNIQUE TLX 691595
ORBITAL PARAMETERS FOR METEOSAT RUN NUMBER 33

DERIVED ELEMENTS HEIGHT OF PERIGEE (XM) 35768.439692

HEIGHT OF APOGEE (KM) . 358Q5.748998
SEM] MAJOR AXIS C(KM) = H 42165.738345
ECCENTRICITY - .RRR454
INCLINATION (DEG) - L191114
ASCENDING MODE (DEG) =« 189,854227
ARG. OF PERIGEE (DEG) « 253.,674435
TRUE ANOMALY (DEG) - 120.281037
VECTOR X - COMPONENT (KM) - -38585.968653
STATE Y - COMPONENT (KM) - -17026.%22147
1 - COMPONENT (KM) - 33.927Q94
X - COMPONENT (KM/SEC) 1.239819
Y - COMPOMENT (KH/SEC) « -2,812761
1 - COMPONENT (KM/SEC) « Q9952
EpOCH (U 78 YR 4 MO 17-DA R HO R M1 LRRR SE
ORBIT NUMBER 145,0388

18715752 APR 78 LESR
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Case 8: GMS: NASDA produced elements transcribed
onto GMS data tapes and decoded by
the McIDAS system at the University
of Wisconsin's Space Science and

Engineering Center,

s NLSS MCI

1275337 2 DES
FTIME= SFMIMA=
MEANA= PERELL=

BTINMY=

OEBINC=

ICCEN=

721228
z€ ASNCDE= 1&F114

Case 9: TIROS-N: NESS Transmission

TIROS-N NAVIGATION SYSTEM POLAR SPACECRAFT EPHEMERLS ACCESS ROUTINE INITIALIZATION AEPORT AT JAN 02, 1980 VER 3,0 PAGE 1

EPOCH OF CURRENT CYCLE IS 79/12/31 19 19 23,664 SPACECRAFT ID IS #awARd DEPAULT NUMBER OF INTERPOLATION POINTS IS 10

START TIME OF DATA GRADES END TIME OF DATA GRADES INTERVAL OF DATA LENGTH OF DATA

GRADES  DATE DAY  SECONDS GRADES DATE DAY SECONDS

FINE 12/30/79 79.364 0. FINE 1/11/80 80. 11 0. 100 SECONDS 12 CYCLES

MEDIUM 1/ 5/80 B0. 5. 600. MEDIUM 3/17/80 B0. 77 0.‘ 10 MINUTES 72 CYCLES

° COURSE 3/10/80 80. 70 3600. COARSE 6/14/80 80.166 0. 1 HOURS 96 CYCLES

ELEMENTS AT CURRENT CYCLE's EPOCH
KEPLERIAN INERTIAL TOD BROUWER MEAN

SEMI-MAJOR AXIS 7221,8962554074 X ~2568.2800593576 SEMI-MAJOR AXIS 7228.9597759711
ECCENTRICITY 0.0012051329 Y  280.5696240752 ECCENTRICITY 0.0013492807
INCLINATION 98.9826322459 Z 6737.4203664218 INCLINATION 98.9782134269
RT ASC OF ASC-NODE  329.4207821364 XDOT -5.3608748958 RT ASC OF ASC NODE  329.4172856807
ARG OF PERIGEE 63.5514823988 Ypotr 3.9020314858 ARG OF PERICGEE 96.7543541300
MEAN ANOMALY 45,3887663021 ZDoT -2.3898005021 MEAN ANOMALY 12,2180973526

0002 PSCEAR - FOR INTERPOLATION PURPOSES 10 POINTS WILL BE USED INSTEAD OF THE INPUT VALUE 0

TIME.

7228.96

ORBITAL PERIOD IN SECONDS

0.001349

BROUWER ELEMENTS 800102.

98.98
6123.89

329.42

0.

96.75 12,22



Case 10:

vaba Gurl

1waAUlneee T1U=525~2716
DE Guwww U25'E
Uv/sulilc

Fv

MI551IN avi LA1A JrErsilovd
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NIMBUS-G:

1) GSnMi/NAvSFASUL DAHLGneEy VA

Ledn/C¥y LadNION FrAvCE ALLN he
GorM/NIrAD CIC CHed NN E
GSKY/ZWILAELY P Sikridw&nle bhallId e

Losvi/ AR FARNBIN) UGH
G5i18/bn
COLunAL) S1 UNIV CO 1
G157 0bs wnlGal
CS1S7CO%EUT

THOMAS VIN bkr HAAKR
“A Y10-93U-90038
CODE wli

A CoMrlL ks

LEr

LiabbLele

CIZLIFS) S1IN CAIREF
GEndaN! ATIN ¢l 44En
ENGLANL A11N 1VG-AELE SrACE
AL SrdEalC

NASA Transmission

NaSA GorC CakrVNbeLs AL

1eLba 82301

LEed
SCIENCED

ink FOLLJwING Ank 1dE EFRIUWEn MEAN Jabl 1AL LLhMENlb

FOR SATRLLITE 19748

COMPUTEL AND I55UEL bi
11 M U3 DUub 00N

E&ICA 75
SEYI-¥AJ0R AK1S
ECCENTRICI 11
INCLINATIDN
MEAN ANIMALY
AnGUAENT JDF PERIGEE
T oMOTION MINUS

ReAe JF ASCENbLe wNIDE

. PN SR FLUS
ANDMALISLIC FERIJD
AEIGAl OF PERIGEE
AklGA1 JF APJIGEL
vELICLiY AT FESICGEE
VELOCI 1Y Al APJGEE
GkICe LATe JF FPEnlLGLE

INErILAL CIInLIN&TLES

944 NIMEUS-G

Tk GIDLANRD SPACE, FLICGAT CEVTER.

73256 1057
«U0UE 43
IYe 2IUS
1292702
229« UALUS
2s 686
219+ 3325

Ue 9903
1U3.98734
940. 79
453. 14
£6579.

* . £6534.
MINUS  45.183

\

UeuuUU S Yis

KLLIOAETRasS

DEGHEES
LECKEES
LEGAEES

LECGe rEit LAX
peGaked

LiGe rfEn VAS
MINUIES -
AILIMELIRERS
ALLIYETEnD
K¥Ye FrEn dAn
AK¥de FEn rihe
UEGREES

AEFERENCE Talk JF DAE

- 56480572
~LEbTle 5658
-21de9159
~Ue 9239

L Ue 7799
Te2715

AILJIYMELERD
KLLIME L ERD
KILIZAELERD
KVs PFLhit SECe
n¥ie rFER >iCe
AVie rhin SkCe

AHVAL LS
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APPENDIX B

COMPUTER SOLUTION FOR AN EARTH SATELLITE ORBIT
(PERTURBED TWO BODY)
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APPENDIX B

COMPUTER SOLUTION FOR AN EARTH SATELLITE ORBIT
(PERTURBED TWO BODY)

SUb?ﬁEf%NL SATPOS(IYRDAY,SATTIM, ICOOK, XSAL,YSAT,Z5AT,SATLAT,SATLON
*,5A 1

DETEKMLIHE A SalrLLIfe PUSITIUN VECHOk ACCHORDLING T A KEPLERIAY URBIT

ERIC A, SMYTH

DaPARTMENT Uy ATMOSPHEKRIC SCIENCE

COLURADU STaTE UNIVERSITY/FOUTHILLS CAMPULS
FORT COLLINS, CULUORADD b0523

TEL 303-491-8533

REFERENCES.

BUWDITCH, NATHANIFL,1962.

AMERICAN PRACTICAL iWAVIGA
G

TOR
U,5. NAVY HYDRUGRAPHRIC OFF1C
UdLTED SYATES GOVERNMENT PRI
ESCOBAL, PEDRD KAMUN, 196D,
MELHUDLS ur URBIT DEleEkEINATIUN.

JOHN wlLheY AND SOWS,INC.,NEWw YORK/LOWDOw/SYDHEY,463 PP.

INPULT PARAMETERS

- AN EPITOMIE OF wAVIGATIOW,
e,H.0. vlis, N0,
NTING UFFICE, 1524 PP,

IYRDAY = YEAR ( YYDDD IN JULIAN DAY )
SATTI1IM = TIME ( fAOQURS IN GMI )
ICuLK = v FOR TERRESTRIAL CUURDINATES

= 1 FOR CrLESIIAL CuORDINATES
OUTPUT PARAMETERS
XSAT = X COMPONENL OF SATELLITE POSITION VECTOR ( K# )
ISAT = Y COMPONENT UF SALELLITE PUSITIUN VECTOR ( KM )
ZSAT = 2 COMPONENT UF SalfeLLITE POSITIUN VECTOR ( KM )
SATLAT = SATELLITE LATITUDE ( DEGREES )
SALuLUN = SATeEubLITE LUWGLTUDE ( DEGxEES )
SALRGT = SALCLUITE HELGHLT ( KM )
LALTLIFUDE I8 GIVEN il TERMS 0UF SPHERLICAL COORDINATES
USk IrHeE FOLLOWING TrRANSFORMATLUN 1O CUNVERT T0 GEUCENTRIC LATITUDE

S=ROPDG*SATLAT
SATLAT=ACIS(CUS(S)/SORT(1.0~(E*SIN(S))*%2))/RDOPDGC

REAL J2,04,1d8C,84C, MANOML
CONTRUL KEYS AND BRGUWER MEAN ORBITAL ELEMENTS

I0SAT = SATELLLTE TYPE
SET POSITIVE FOR INITIALIZING NEW SATELLITE TYP
SET NEGATIVFE FOR RETALNING ULD SATELLITE TYPE WITH NEW ORBIT PARMS
1U03AT Is THeN Sel PUSITIVE
IMOR]1 = ¢ FUR OR3TT AnuUmALY GIVEN AS MEAN ANOMALY ( E.G. NASA )
= 1 FOR ORBIT AmUMALY GIVEN AS TRUE ANOMALY ( K,G., ESA )
IOSEC = ¢ FOR ZERU URDER SECULAR PERTUKRBATION THEORY
= 1 FOR FIRST ORNDER SECULAR FERTURBATION THEORY
= 2 FOR SECOWD URVER SECULAR PERTURHATION ThHEORY
IEDATE = EPOCH DATE ( YYMMDD 1IN CALESDER FURM )
= PDATE FOKR AhlCH FOLLUOWING ORBLTAL PARAMETERS ARE VALID
IELIIME = EPUCH TIME ( hHMMSS 1N GMY )
= T1IME FUR WH1ICH FOLLOWING ORBITAL PARAMETERS ARE VALID
SERIMA = SEMI-MAJOR AXIS ( KM ) _
= HALF THE DISTAWCE BEIWEEWN TWO APSES OF APO=-FUCUS AND PERI-FOCUS
DECCEN = wCCENTRICITY OF wARTH ORisIT ( UNITLESS )
= LeGREE OF ELLIPTICITY OF ORBIT
ORBINC = URo1T INCLINATION ( DEGKEES )}
= ANGUE BETWEEN THE URSIT AND E£QUATORIAL PLANES
OANCML, = OrKIT ANDMALY AL EPUCH TIME ( DEGREES )
= AMGLE IN ORBITAL PLANE BPEIWEEN PERI-FUOCUS AND SATELLITE POSITION
GIVeEN AS EIThER A #vikaN ANUMALY OR A TRUE .ANUMALY
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Cf wun
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Gk = RRGUMEAS O veklGEr AT EFOCR TIMAE ( DEGREES )
= Awube T8 urHLl PLAwe FRUM ASCEIDING wUr O PIRI-FUCUS
br = wlauHl ASCErLS1ON OF ASCKauInL nOlE AT RPUCH Tlén ( DEGKEES )
= AWGLe 1IN =QuUATUKIAL PlLave belwiesy VERWAL cUUINUX(PRINCIPLE AXIS)
AND) NUR[HeaRD eQUALLR CRUOSSING
DL o= PERIUND ( sinlted )
= STATEMENT uF KEPLERS THIRD LAW
ThHIS PARAMELIER IS CALCULATEL 1IN SBTPUS
U = AnleAplLiSTIC PERICU ( MlwdreS )
= Tive BeTwerli THE PASSAGE FROV Uiy PERI-FOCUS TU 1HE NEXT
I1HIS PhvhdriEr 16 CALCULATEL [ii SATPUS
UL = wilal, PRl { mlndli8 )
= I'lMe BETwémn THE PASSAGE FROM UONE EQUATUR CRUSSING 10 THE NEXT
1H1S PArRAMETRER IS CALCULATED Llwu euCrROS
UN/ZURBCUOM/ZLOSAT, INORT, TOSHC, TEDALE , 1K1 IME, SEMIMA, OECCEN, ORBINC
UMb, Per1GY, Aduupk, PERIOD, APERID, PERUD
NITIULS
ANOMALY (M) e ANGLE It ORBITAL PLANE WITH K hPLCf TU THE CENTER
OF & #tAN CIRCULAK URBIT(HAVING A PERIOD EQUIVALENT
Ty Irne ANCHALISTIC PeXIUDIFRUOM P:RI FOCuUS Tu [HE
SATELLITE PUSITION, i
AnUMALY (M) . BrGLE LN UKHITAlL PLANE WITH RESPECT TO A FOCUS OF
THE rLLIPLIC FRunM PER1I-FUOCUS TO THE SATELLITE
PUSLILIUN, )
NTKIC ANOWMALY(E) ., ANGLE IN ORbILAL FLANE WIIH RESPECI TU THE CEWTER
UF A ClkCLE CLRCUWSCRIBING THe ELLIPSE OF MOT10N
FRUMN PeRIFOCUS Tu YHE SATELLITE POSITION.
AL CONSTANTS
VAhue 0OF P1
R = nUARER (OF DeYS (Eak ( DRPYS )
K = nUABER OF DaYs L YEAK ( DAYS )
EODATORIAL ZARTH )
UN = VERRESIRIAL G L CONSTANT ( KE;SQRT(G*ME*éU**Z/Rb**S )
vHERE wE = TE RAV CON ( 0.u7436574 EM¥¥ S¥ER*X1,5/MIN )
Go= UNIVE CONSTANT ( b.b73E~8 DY\n*CM**?*GM**-z )
M= MASS ( 5.9733726827 GM PER EM )
FE = kADIUS OF H ( h,3/8214kLs Ch PER ER )
FLATYENMILIG ur I'bh ; (B=3)/A , F=1=SQkT(1-E*%x2) )
ECCENTRLICITY UF 1HE EAl SUKT(A*%2=B*¥%X2)/n , E=SGRI(2XF-F¥%2) )
whikRe B = FLATTENING OF EA ( 3.35/08YE-3 )
£ = ECCENTRICITY OF (f'H ( 8.1220157K-2 )
A = SEMI-wAJUR EARTH AXIS = EQUATORIAL ( ©378.214 KM )
B = SEH;-MIHUK EARTA AXIS = POLAR { 6356.829 Kw )
= Ax(
C = MEAN FARTH RADIUS ( ©6371.086 KM )
= (2%A+B)/3 R
SECUND HARMIMIC COEF OF EARLHS ASPHERICAL GRAVITATIOWAL POTENTIAL
PDUKTH HARMONIC CURF OFr VARTﬁS ASPHERICAL GkAVITATIUNAL POTENTIAL
= YYDuD WdEN CELESTIAL COUk SYS COINCIDERS WITH EARTH COOR SYS
I.#. TRANSIT OF ¥1RST PUINT OF AlRES %]TH GRErwwlCH MERIDIAN
MS = HHMMSS WHEN CELESTIAL CGiIrR SYS COIKCIDES WITH BARTH CUOOR SYS
1.8, TRAWSIY UF F1kST POLNT OF AIRES wllH GREmNWICH MERIDIAN
4G = CELESTIAL HUUR ANGLE -~ ZERU AT TwANSLIT TIME ( DEGREES )
s = PERIOD UF THE PRECESION OF [LHE VERNAL EQUINOX ( YEARS )
Iv = OBLIQUITY OF THE ECLIPTLIC ( DRGREES
I = MAXIMUYM dUMpER OF 1TERATIOWS ALLUWED FOR CALC ECCENTRIC ANOMALY
Liv = CONVERGEWCE CRITERION USeED FOR CALC ECCENTRIC ANOMALY .
AY = PReVIOUS VALUE OF 1YRDAY
T = PREVINUS Vabuk OF IOSAT
P1/73.14159265358979/
SJULYK,SIDYR/365.24219879,360.24219879/
Fe/o3id.214/
GuACON/Q.07436574/
F/3432289E-3/
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L/t.1820157m=2/
J2,J4/7+41082.2nc=6,~2.12E -6/
inPuAY,lﬂrn\b/7UUOL.171000/
CHRANG/ZO U

PﬁhVEG/ZS?nJ.u/
usCLIP/23.45/

MUMIT ,EPSL1ii/20G,1,.0E=-8/
LYRDAY ,LUSAT/=1,=1/

Iwltzu/

TIALYZE CUnSTANLS
1.NE.V)GO 10 1

P b _ b op =g
[l e Rl el el

T H CTDOUCGTTDO
-
N

C*—'H = DPrEIEIPIPPEIIT

SOLSID=HIPDYR/ZSILYR
RHAMS=FT LM (LREAMS)
CHASRLUPDGHCHARANG

ROTATION KATE OF 'THEe VERNAL mJUINOX IN
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VEQsSTWOP L*SULSID/ (PREVEQ*SULYR*1440,0)

TExKSSIRLAL ROTATLION
ROT=IWOri*SuLSIL/1440.9

TEST TU o&E IF DAY UR SATELLITE HAS CHANGED NECESSITATING PARM UPDATE
IF(LYRDAY.EU. LYKDAY . AND, IOSAT.EQ.LOSAT.AND.TOSAT.GT.0)GO TO ¢

TOSAL=1aB5(10SAT)
LYRDAY=1YrRDAY
LUSAYT=108AT

CONVERT EPUCH 10 JULLAN DAY-TIME

IEPDAY = YEAR=-DAY UF EPYCH ( YYDDD In JULIAN DAY )
IEPAMS = ROUR=-MIALTE~SECUND OF EPOCH ( HHNMMSS IN GMT )

IEPDAY=MLCUN(1,1EDATE)
IePrnS=iktiMe

DEFINE MEAN ANOMALY

EXPLICIT RELATIONSHIPS BETWEEN V,E,

CUS(V)=(COS(E)~ IJ/(]-{*COS(L))
Slu(V)=SGRAT(i-T%¥2)%SIN(E)/ (1~I¥CUS(E))
CUSCE)=(COS(VI+I)/(1+1%CD5(V)) N
s1n(5)=SuxT(1-1**2J*SIM(V)/(1+1*CuS(V))
Mk~ IXSIN(E)
IF(IMDRT. Q.Q)MA¢nMp;0ANUML
IF(IMOKl.NE.U)CTA:COb(K)P JG*¥OANDML)
IF(ImMURT, NL.D)bANUML=ACOS((CTA+OrCCb. /(1.
IF(IMURT N®,OIMANOML=(EANOML-0OECCEN+SIN(E A
MAWDKLEARUD (AANDAL,360.0)
IF (MANUML.LE .0 0)MANOKHL=350.0+MANOML

DEFINK ECCENTRICITY FACTOR AND ORB1TAlL SEMI-PARAMETER

EFACLR=SURT(1.0-0ECCEN%%2)
OSPAKH—(bLMIMA/PP)*LFACTR**2

RATE Iw TERMS OF S1DEREAL TI1ME

AND M ARE GlVEN BY THE FOLLOWING

CALCULATE INCLINATIUN SIn AWD COS TERMS

INCSrUPDGXURBINC
SI=81n(InC)
CI=Cus(1unC)

TERMS OF SIDEREAL TIHE



OOnNn OnNa Oon

[glelp] ann

QN

aOOOONn NNnN
o

137

MiEAw ful i) COASTART
MNCSLHACUNR*(RE/OEMIMA) *£) .2
CALCUL.ATe DRSITAL PERIOL
PERIUN=1LUPL/MMC

CALCHLATE ANUMALISTIC dran mULION CONSTaNT AnD DERIVITIVES sASED
UN SulbieCleD URDER OF SECHLAR PERNTUKRDALTION THRLKY

IF(luoeC.Ew.0)G0 TO 2
IFLI0USeCaed.1)Ga TD 3
Gl Ty 4

ZEKU DRrumR

AMnC=tinG
DPLR=ULU
DAGN=0,0
G Tu 5

FIxST uURbhER

5*'Z*rFA(1R/UhPA9W¥*) *¥(1,0-1,5%51%%2))
“2.54%51 %) /08P ARIB¥X2) XA 1“C/RJPDG

AHCEMAC¥ (1.04(1.
JOSCRRMRY 1) AMHCY ROPDG

D+ (
PPer=+(1. 5¥uz4(?
DASH==(1.5%12%Cl
Gu Tu 5

SECOND URDER

AMACEMMCA (L. 0+ (1 . SFI2XEFACIR/0SPARM*¥2)%(1,0=1.5%3T#%2)+(0.0234375
**J'**z*khh(lk/OanKn**4)*(10.U*PFAC1R+23.0 EFACTR*¥¥2=-15.0+(30.0-96
* OFEFACTR=Y0  OXEFACIR*%2)XCI %% 2+ (105, u+144,UFEFACTR+25 (UXEFACTR* %2
#)3CIFra)=(0,3515025%J4¥EFRCLR*0ECCLN*#2/0SPRRM*%4) ¥ (3,0=30,0%C14%2
¥+35,U%C1*%4)) )

DPLK=+( (L 3FJ2X¥AMEC/USPARMPH2)R(2,0=2,5%51%%2)%(1,0+(1,5%J2/USPARM
¥¥kL)R(2, 0+ULCCth*$2/2.0-2.0FEFACIK-(1.791bbobo7-0ECCEN**2/4&.0f3.0
**ErALLK)*ol**Z))-1.ZS*J2**ZfUdCCEd**2¥MMC*C1**4/U§PARM**4-(4.3150*
*¥J4AMmCAUSPARMEX R4 % (1.714265714=0.042857143%S1%%¥2+5,25%51%%4+0ECCEN
FERLE (1.9£405T1429=-6.T3%51#F%2+45,00625%51%%4)))/RuPG

DAaw=~((1.b*JZ*uMwC*CI/ubHAAm+*7)f(l.0+(1.S*d//ﬂbrARV**z)*(].5¢0EC
*¥Crn*%2/6,0=2 0%EFACTtR=(1.006606007-1,208333334%0ECCEN**2=-3 U*¥EFACT
#R)ibli*Z)J+(4.5754J4*PML/UJPARM**4)*(1.U+1.5*LFLCLN**Z)*(U.6571425
¥57=1.5*51%%2)%C1)/RPDG

CALCULATE ANOMALISTIC PERIOD

APERUL=TwUP L/ AAMC
DETERMINE [IME OF PEKI-FGCAL PASSAGE

IPFDAY = YEAR-DAY UF PEKIFOCUS ( ¢YDDD IN JULIAN DAY )
IPKFHMS = HUUR=MINUTE~SLCOND OF PERIFUCUS ( HHEMMSES IN GHT 3}

JYEAR=LINLLIV(IEPVDAY,1000)

JLAY=mOD (1LPJIAY, 1000)

EHMS= FlInL(erth)
I'IMEZRMS=RDPDOXMANUMLY/ (60 ..UGXAMMC)
IF(TIME.oLV.0)1I8=+1

Tl LI 0 0)IS=-1
:Aua(lle)/)4 U+1.0

DAY= LSX¥IT
(
M

~

F
Iy

TwaY JGT.O)INAY=IUAY=]
ST Me=TDAY®24,0
(LUAY.eb-00G0 10 8
AYz=upAi+IDAY

Ldu»! Ll.1)GU0 10 o

ur —LUMIR(J{LAR)

LHLH’CHHHP—‘

1F
P H
F
b
F
T
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Leluuey,usJPODIGU WU 7
Gi) fu o

JYrAnz=yYeaK~-1
JDAYSwUmMmIRK(JYEAR)+JUAY
GO Iu &

JYran=JYroAR+1
Joaysdpay~-JdTOT
1PFDAY=10LO*JYRAR+IDAY
IPrAmS=lilvE(PAnsS)
PHASZFTIMe (19F4Y%5)

ADVUST PEXIGEE AND ASCENDING HLOUDE TU TIME UF riekI<«FUCAL PASSAGE

DIFTIH=TIMDIE(IFPDAY ,EHMS, IPFDAY, PHMS)
PERVFP=PERLGE+DPuR*DIFTIM

PERPF =AU (PKRPFP,360,0)

IF{perPEP LT, 0, 0)PERPEP=36U.U+PERPFP
ASHPFEZASNUDE+IASNFDIETIN
ASHPFP=AYMUD(ASHEFP,360,0)
%F(ASNHFV.LT.U.U)ASNPFP=360.U+ASNPF?
Ef=1

CaALCULATE DELTA-TIME ( FRUM LIME OF PERI-FOCUS 10 SPECIFIED TIME )

DIFTIw=1lHD1F (IPFDAY ,PHAS, TYRDAY,SATTLM)
éElIUSEC.EU.U.AHD.huY.EO.U)GU T0 10
O3 Y

CALCULATE TIME DEPENDeNT VALUES OF PERIGEE AND ASCEIUDLING NUDE

PER=RDPDOL* (PERPFP4+DPEK*DIFTIM)
ASN=XKDPDG* (ASNPFP+DASW*DIFTIN)

CALCULATE PERIGEE AND ASCENDING NUDE SIN AND CUS TERMS

SP=SIn(PrRr)
CP=CUS(PLR)
SA=SIN(ASN)
CA=CUS(AoH)

CALCULATe FPHE (P,Q,W) ORTHOGONAL OURIENTATION VECTOURS

P PULWLS TOWARD PERI=FOCUS
Q 1S IN IHE OKBLIT PLANWE ADVANCED FROM P BY A RIGHT ANMGLE IN THE DIRECTION
OF INCwEASING TRUE AHNOMALY

CUMPLELES A RIGHT HANDED CUOORDINATE SYSTEM

W
PX=+CPXCA~SP*SA¥CI
PY=4+CP%*Sa+SP*CA%CI
PZ=+5P¥51
AX==-5P*Ca=-CPX5A4CI
QY==SP*SA+CP*CA*CI
DZ=+CP*51L
WX=+ShA%*S1
WY==CA®S51

WZ=+Cl1

VEr INE FeAN ANDMALY (M) al SPECIFIED TIME
MANOML=ANOL (AMAC*OIFTIM, TWOUPL)
CALCULATE ECCENTRIC ANDMALY(E) AT SPECIFIED TIME

Tne SOLULION IS GIVEW BY A SIMPLIFIED NUMERICAL (NEWTONS) WMETHUD
AN EAPLICIT RELATIUNSHIF IKVULVES A BESSEL FUNCIIUN OF THE FIRST KIRD J(N)

E = A+2%SUM(w=) , INFINITY)(J(N) (N¥I)*SIN(N*M))

EDLD=mANOML
DO 11 4=1,HUMIT



[elalelslislinlnls!

anannn

cOn

[elplele]

[glglple]

11

12

13

139

EANURL=aA i+ eCCrinFo L (i)

LF(Azs LA ehb=wLD) JLLTEPST LG 1O 12

EJbuz o anuinh

EXPreSSlu FJR MAGHLITUDE UF SaTELLITE KAplusS VECIOR ( R )
K = RE*XOSPARN/(1.0+UECCEN®CAS(KARNUNL)Y)

GEWREALE A FOSITLOw VECIOR ¢lTh KFSPECT T Tdk FJCUS AND 1n THE OKBITAL
PLavE. nOTE THaT TeE 2 CIAOKULNATE 16 AY OEFINITIUN ZERD.

XU UAZSEMTMAR(C IS (RANUML) =URCCEN)
TURMEGA SeMIMAX(SIN(FANONL) ¥k ACTR)
ZOMBLAa=Y

TRAMSFORMATIOK 1Y) A CHLESTLAL PUINTING VECTUOR hY UTILIZ
E

ATI0N 0OF THE
I1X. WNQT¥ THAT
GA

T
TranSruse OF Ve (P,3,W) URTHUGONAL TRANSPURMATION MATR
IS ZERO,

THE tnlel =uw CUdTAINING w 15 WOT kewUIRED dECAUSL 2UM

XSATEXUMRLGARP X +YUMEGARQX
YSALSAUMEGA®PY+YINEGERQY
ZSAT=XUMEGA*CL+YUMEGARQZL
IF(ICUUR.RELDIGD TU 13

DETERMLEE TRAUSFORMATION MATRIX FOR kUTATIUN TG TERRESTRIAL COURDINATES

DivTLia=tImDIF(IEDAY , RHAMS, IYRDAY,SATTIIN)
RAS=CriA+D]IFTIM» (R)L=VEQ)

RAS=AMUL (RAS, TWiPL)

IN(RAS)

LUb(HAn)

S AbAI
ROLAF1UW TUu TERKESTR1IAL PUINTING VECTUK
XSAT=+CRA¥XS+SKA®YS

YSAI==SKA®AS+CRA*YS
ZSAL=+LS

COnVeRY Tu SPAERICAL CUUKLINATES
SS=XSAL*RASAL+YSATHYSAY
SATLAT=ATAN2(ZSAT,SUKT (55))/RUPDG
SAYLUGZALANZ(YSAT, XSAY) /v PLG
SATHGT=O ukl[bb+LhAT* SAT)

RELURN
kb
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APPENDIX C

COMPUTER SOLUTION FOR FINDING A SYNODIC PERIOD
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APPENDIX C

COMPUTER SOLUTION FOR FINDING A SYNODIC PERIOD

SUbBHUUTINE FUCRUS(HL., TureLT,IGDAY,GHMS)

EMPIKICAL DeTERMIHATIUN UF EQUATUR CrNSSIHGS Afuv RODAL PERIVD
ERIC A, o>nITH.
DRPARTmERT OF ATHUSEHERIC SClenCE
CULURADU STATE UNIVERSITY/FUUTHILLS CamblLSE
FORT CULLINS, CULDRAD w0b23
TFL 303=-4Y91-9533
INPUL PAKAMETERS
NUM = nUMBeER OF Uks1YS FOR wHICH TU CALCULATE EGUATOR CKROSSING PARAMETEKS
1F NUM 1S SkI To ZERU nU EWUATOR CRUSSInG INFORMATIUN IS PRINTED
I0KBIT = ORBIT KNumtek OF INITIAL GUESS pQUATUR CRUSS1ING
IGUAY = YLAR=DAY UF IwITIAL GUESS ( YYDDD )
GHIMS = GMT TIME UF JNITIAL GUESS ( HOUKS )
COMMUN/ZURPECUOM/INSAL, IH0ORT,108eC, YEDALFE, IRTIME , SEMIMHA, UECCEN ,URBINC
*,UANJML,PbKiGE,ASNUDE,PLKIUD,APEhUD,tPtRUU
DALTA CRI1/0.00001/
IPASS=1
JYRDAY=TGDAY
SATTLM=GHMS
NEG=0
XINC=0,UZ
1 CALL SATPUS(IYRDAY,SATTIW,0,XSAT,YSAT,2ZSAT,SATLAT,SATLON,5ATHGY)
IFLAGS(SATLPY).LT.CPLI)lJ 1! 5
I¥(SATLAT.GT.0.,0)GD TD
NEGs1
IUDAY=]1YRLAY
XOTIm=SALTTIM
2 SALTIM=SAYTIM+XINC )
IF(SATTINM.GK .24, 0YIYRDAY=1YRDAY+]
IF(SATIIm. G, /4.U)o IM=SA1E1M-24.0
Gi) 10 1
3 IF(NEG.ME,U)GD TO 4
SATTLIM=SAl1T1A=XINC
IF(SATIIM. LT .0.C)TYRDAY=IYRDAY~1
1F(SATIIMLLT.0.0)SATTIM=SATIIM+24.0
GO TO 1
4 XINC=XINC/10.0
IYRDAY=IUDAY
SAIPIH:XU)IM
GN TU 2 ,
5 IFLIPASS.EG.2)GO 10 6
IPASS=Z .
IEDAY=1YRDAY
EHMS=SATILM
TIYKDAY=1&DAY
SATTIM=EANS
SALTIM=SATTIA+APEROL/60,.0
IF(SATTIMLGR.24.0)I7RDAYSIYRDAY+]
IF(SATTIM.GE o 24.0)8hT LI #=SATTIm=24.0
NEG=O
XINC=y,02
GO Tu 1
6 IFVAY=LYRDAY
FHASSSATLIM
EPERUDSTIMDLIF (IEDAY ,EHMS ,IFDAY ,FHMS)
IF(NUM,LT.1)RETURN
URITE (B, 10U)PERIUD, AP:RDL,E?nRUD .
100 FOrRMAT (X0 KIOD = ,F15.6,/,% ANOMALISTIC PLRIUD = *¥,F
¥15,6,/,% NODAL PPHIUD = *,515. /)
WHITE(®,101)
101 FORMAT( ¥ ORBIT DATE YYDLD HHMMSS GATITUDE LUNG1TUDE SAT
¥HELGHI*,/)
DELTSEPERUD/60,0

JORB=LukonlT
IYRDAY=1tDAY
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APPENDIX D

COMPUTER SOLUTION FOR A SOLAR ORBIT
(PERTURBED TWO BODY)
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APPENDIX D

COMPUTER SOLUTION FOR A SOLAR ORBIT (PERTURBED TWO BODY)

SUBKUUTINE SOLAR3C(LYPDAY,SOLTIM, ICULR, XSUN,YSUN, 23Uk, SUNLAT, SUNLUN
*,SUNHGT)

CiMPUTE Sul PusSITIUL VECTHE aClUxinG T A KEPLERLAH ORBIT
Ex1C A. omITd

DEPARTMENT UF ATMOSEHERIC SCIlenCh
COLUKRADD STalk WNIVERSILTY/FUOTHILLS CahPUS
FURT CulLbltds, CriRabu 40523
TEL 303=441-H533
REFERFLCES,
BOWDLTCH, NATHANTIEL, 1962,
AMERLICAN PR CTICAL HLAVIGATOR = AN ePITUMIE OF NAVIGATION
U S, NaVY HYDROCGRAPHIC OFFICH,H.0. PUB, ND, 9.
URLTED SLATEb GOVERIMENT PRINTING OUFFICE,1524 PP,
ESCUHAL, PEDRD rAMDY, 1965,
MELHUDS UF OR8I1T DETEKM1INAT
JOHW WlLeY AND SUNS, LnC,,NEW YORK/LONDUN/SYDUNEY, 4863 PP
THE AMERLCAN EPHENMEKIS AND WNAUTICAL ALMANAC,1978.
ISoveD Bi THE NAUTICAL ALIKANAC OFFICH
UNITED STATh%NBAVAL OUBSEKVATURY
HER MAJESTYS WAUTICAL ALMANAC OFFICE
ROYAL GrEENWICH OBSERVATOKY
U.S, GOVERNMENT PRINTING OFFICE,WASHINGTON DC,573 PP,

INPUT PAKAMETERS

IYKDAY = YEAR ( YYPLD Iu JULIAN DAY )
SOLTLIN = TIMKE ( HOURS IN GMT )
ICUOK = v FOR TERRESIKEIAL CUURDINATES

= 1 FOR CELESIIAL COORDIKATES
OyfPUl PARAMETERS
XSUl = X COMPUOWNENT GF SuN POSITION VECTOR ( KM )
YSUN = ¥ CUHPONENT GF SUN PUSITION VECLOR ( Km )
2SUF = Z COMPOWENT 0OF SUN POSITION VECEDR ( Kw )
SUNLAT = hUW LATITUuE ( DEGREES )
SUNLUN = SUN LOMGITUDE ( LEGR®ES )
SUNHGYT = SUN HEIGHT ( KM )
LATITUDE IS GIVEN IN TERKS OF SPHERICAL COORDINATES
USt. LYHE FOLLIWING TKANSFOP &PI0H TO CUNVERT TO GEUCENTRIC LATI1UDE

S5=RDPDG*SATLAT
SATLAT=ACHS(CLS(5)/50RT(1.0-(E*SIN(5))**2))/RLPDG

KEAL MMC,MNANOML,INC
BRUUWER #EAN ORBITAL ELEMENTS

IEYDAY = &P3CH DAY ( YYDOD IN JULIAN DAY )
IEPHIS = EPUCH TIME MMSS 1 GMT )
SEMIMA = SE¥I=-MAJCF My A )
OECCEN = eCCERTRIC OLAR IiWBIT ( UNITLESS )

= ( DEGKEES )

= LION AT EPOCH TIME ( DEGKEES )

= ASCEWDING NODE AT EPOCH TIME  ( DEGREES )
0 :

00/

(
A
'Y
ORBINC OREIT INCLINA
ARGUMENT

RIGHT ASC

H
15
F
TI
K

Rt ol

0
I

-
v
m:
x
I
o
=

N

=

v

Cm=0 -

E
F
3

¢
S
N
H
1]
230

’

] C‘ —=ye X
N

S
#
3%
/

=N (T DFHL[‘“
NO

~ l—'(nxl
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URoITAL CUNSEPANTS ‘
PI = VALUE OF »I ]

SOLYR = NUMpBER OF LAYS Tiv SULAK YEAF ( DAYS )

SIDYK = WUMBER LF DAYS LN olD&RrAL Tehk ( DAYS )

RS = ASTKROWUMLICAL, UnIi Ki ) .

GRACUN = GAUSSIAN GRAVITATIONAL CONSTAMT ( KS=SURT(G*MS*§H400%X%X2/RS¥*3 )

WHERE RS = GhJS3TAN GRAV Cun ( GL.U17202099 Su** S*¥AUx*1,5/DAY )

G = JNIVFRSAL GrAV CUnblAwl ( 0.673E=8 DYNLFCMEX2¥Gm*%=2 )
¥S = maSS OF SJN ( 1.YeHERZze33 GM PER SM )
RS = ASTRONOSICAL UN11 ( 1.4%6r13 CM PEK AU )
NUTF..,  MEAN EAKTn~=SUN DISTANCE IS 1.00000G003#%AU
SEul=MAJOK AX1S 1S 0.999674186*AU
SORTMU = SECOND BuDY MASS CORRECIION FACILCR ( SORTMUSSQRT(1+(ME+MMN)/MS )
wHERE SoRTMU = MASS CORRECTION FACTOUR ( 1,00000152 Sv¥x,5 )
ME = MASS OF mARTh ( S5,9Y733726E27 Gal )
M o= MASS QF HUOOUN  ( 7.3473218E25 GM )
MS = 4ASS DF Sui ( 1,9:8882233 GM ) B
F = FLATTENING U THE EARTH ( F=(A=-R)/a ; FE1=SAOKT(1=-E¥%2) )
E = bCCEnIRICITY UF THE EARTH ( E=SQKT(A¥*2-3%%2)/AR , E=SURT(2*F-FX*2) )
WHERE F = FLATIRNING OF EARTH ( 3,35289E-3 )
5 = BCCENTRICITY LK EARTH ( ®,18201%7&-2 )
A = SEMfewmpAJOR EARTH AXIS = RGUATGRIAL ( 6378.214 KM )
B = SE?[-v%JUR EARITH AXIS = PFULAR ( 6356.829 KM )
= A®(1l=l
C = ?EAM fAsgh RADIUS ( 6371.086 KN )
= (2%A+B)
IRFDAY = YYDDD Wien CELESTIAL COUR S$YS COINCIDES WITH EARTH COOR SYS
. I.E, TRANS1T OF FIRST POINT OF AIRES WITH GREENWICH MnkIDIAN
IRFHMS = HHMMSS WHEN CELESTIAL COOR SYS COINCIDES WITH EARTH COOK SYS
I1.E, TRANSIT UF FIRST POINT UF AIRES WITH GREENWICH MLRIDIAN
CHRANG = CELESTIAL HOUR ANGLE =« ZExO AT TxANSIT TIME ( DEGKREES )
DATA PREVEQW/25781.u/
OBCLLIP = DRLINUITY CF THE ECLIPTIC ( DEGREES )
KEY = O FOR COWMPUTING ECCENITRIC ANOUMALY WITH ITEXKATIVE METHGD
SIMPLIFIED WwkwTUNS METACD
= 1 FUR COMPUTING ECCENTRIC ANOMALY WITH EXPLICIT METHOD
FOURLER=-BESSEL SERIES
= 2 PO COMPUTING ECCENTRIC ANOMALY WITH 2ZND OKDER EXPANSION OF
FUURTER-BESSEL SERIES
= 3 FUR CUOMPUTING ECCENTRIC ANOMALY WITH 3RD ORDER EXPANSION OF
FUUKIER=YRSSEL SERIES
= 4 FOR COWPUTING ECCEMIRIC ANUmALY WITH 4TH URDER EXPANSION OF
- FOUK1IER=-ALSSEL SERIES
NUMIT = MAXIMUM NUsBER OF I1TEKATIONS ALLOWED FOR CALQ ECCENTRIC ANOMALY
EPSILN = CUNVERGENCE CRITEKION USED FuUR CALC nCCmeRIC ANUMALY
DALA PL1/3,14159265358979/
DALA SULYF,SIDYR/305.2441987Y9,366.242194879/
DALA K3S/149000000,.0/
DALA GRACUN/0.017202094%/
DATA SQRTMU/1.00000152/
DATA E/3.35289E-3/
DRLA E/B,1820157£-2/
DALA IKFUAY,IRFHMS/78001,171600/
DALA CHRANG/0Q,Q/
DATA PREVEQ/25791 .9/
DALA OBCLIP/23.45%/
DATA KeY/2/
DALYA NUMIT,EPSIUN/20,1.uk=8/
DATA INIL/Q/
INITLIALIZE CUNSTANTS
IFCINIT.NE.O)GD [O 1
Init=1
RDFDG=PI/Z1R0.0
TWUPI=4,u%P]
SOLS1D= leYH/SDLYR



non ann NN ANt 00N

annann

[glels Bl e leTe]

ann
w

146

EHMSSFT1mE(IEPHNS)
RH@SZELIME (IxFH4G)
CHasSROPIRGFCHRANG

ROTATIUK RATE UF THe VERNAL EWwUINUA 1N TERMS UF SIDEREAL TIME
VEG=TWUPL*SULS IO/ (PKEVEU*SULYR*144u.0)

TERKESTRKLIAL KiLFATIOL RATE 1IN TERMS UF SIDEREAL TIHME
RUL=LwUPLI#5ULSLi:/1450,0

DEFINE ECCHENIRICIYTY FACTUR

EFACIH=SURT (1. U0~UrCCENE%2)

MEAN MUTLIUN CONSTANT

MHC=SURTMUXGRACON/1440.0% (KS/SEWIMA)*%1 .5

CALCULATE THE (P,0,w) ORTHOGUNAL URIENTATION VECIGRS

ASN-KDPDQ*ASNODE
IN(IN(.)

PY=+CP*SA+SP#CA*CI
PZ=+5P*S1
GX=-Sr*¥CaA=-CP*SA«CI
QY==SP*SA+CP*CA*CL
CZ=+CP*51
WX=+SA%51
WY=~CA3S5]

Wi=+Cl

DEFINE MEAN ANOMALY(M) AT SPECIFIED TIME

DIFTLM=TiMNIF(LEYVAY ,EHKS, IYRDAY,SULTIN)
MANOML= AMUD(HMC*UIPTIW,TNUP )

CALCULATE ECCERTRIC ANUMALY(E) AT SPECIFIED TIME
IF(KEY 6.1 AND KEY . LEL4)GD TU 3
ITERAT1Ve MELHOD - BIMPLIFIED WEWTONS WEYTHOD

EDLD=MANORL

DO 2 N=1,wUMIT

EANUML= HnNUMb+0ECCEh*bIN( EOLD)
IF(ABS(EANOML-20LN) .LT.EPSILN)GD TO 9
EULDTLANUM

G0 TU

G) TU(4 v,7,8),KEY

EXPLICIT METHOD - FUOURIEK=-BESSEL SERIES
EANOML=MANOML

EQLb=EANULML
DO 9 d=1,NUMIT

X=NF¥URCCEN

YzN*mANGML

ERANOMLTEANOML+2¥BESER (N ,EPSIL N)*SIN(!)/N
IF(ABS(EANOML=EQLD) .LT. ILJ) To
EQLD=EANUML
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GO Tu 9
2HU UKURER EAPANSTOUN

SHA=SIN(MANUNML)

CA=CUS (MARDLML) . . .
EANOMLE=MANOML+SMXDECCEN+S 4 xCusJECCLN#0ECCEN
Go Tu 9

3RD Uxpbr EXPANSION

SM=SIN(MANUML)

CM=CUS (MANDML)

EL1=UtCCEN

E220uCCun*E]

E3=UECChN*E2 ) .
EANUALEMANUAL+SMREL+SH¥FCHAR L+ (S4=1 ,5¥SM¥SMESM) *L3
G Tu Y

4TH urDEr EXPANSION

SM=STu(MANTML)

CM=CJS(MANUML)

SMCN=SM*CH

SIM=SHFSM*5EM

E1=0eCCEN

E2=0uCChN¥E]

E3=0rCCrLN*E2Z

E4=0LCCRN*ES .
EANOMLE=MANOML+SMREL+SMCH¥EZ+(SM=1 . 5%S3M) *¥E3+ (SMCMH=~8X53M*CM/3) *E4

GENERATE A PUSITINN VECTUK wWITH RESPECT TO THt FOCUS AND IN THE ORBITAL
PLANE, NUOTE THAT THE Z CUURILINATE IS BY DEFINITION -ZERO.

XOMEGA=SENIMA* (COS(LANOML) =UECCEN)
YOMEGA=SEMIMA¥ (SIN(EANDNML)*¥EFACTR)
ZOMEGA=0

TRANSFORMATION T A CELESTIAL POINTING VECTOR BY UTILI
TRANSPUSE OF THE (P,4,W) ORTHUGONAL TRANSFORMATION MAT
THE ThHIKRL RUA4 CONTAINING w 1S WOT REQUIRED BECAUSE Z0M

AXSUNZAUMEGA*PX+YIMEGA*QX
YSUNSXOMEGAXPY+YIMEGAXQY
ZSUNSXUMELGAXPL+YUREGA¥0Z
IF(ICOOR.NE.D)GU TU 10

DETEXMINE TRANSFIORMATL{ON MATRIX FuUR ROTATION TO TERRESTKIAL COORDINATES

DIFTIM=TIMDIF (IRFDAY,RHMS, IYRUAY,50LTIM)
RAS=CHA+LIFTIA*(RUT-VEQ)
KASZAAUD (RAS, TWOPI)

SRA=SIN(RAS)

ZATIUN OF THE
RIX. NOTE THAT
EGA 15 ZERO.

ZS5=LSUN

ROYALIUN TO TERRESTRIAL POINTING VECTOR
XSUN=+CHAXXS+SRAX*YS

YSUN=-SRA*XXS+CRA®YS

ZSUN=+ZS

CONVERT TO SPHERICAL COUKDINWATES
SSTASURFASURN #YSUN*YSUN

SUNLAL=ALANZ2(ZSUN,SQRL(SS))/KuPDG
SUNLUNSATANZ2(YSUNW,XSUN) /RDPDG
SUNHOT=SURT (SS+ZSUN*¥Z5UN)
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RETUr

Eilv

FUsCLION wFAC(N)
CALCULATES K FACTORIAL

NFAC=]
IF(N.LE.O)RETUKR
D 1 I=g,n

1 NEAC=SNFAC*L
RLLURN

FUNCIIUN BESFK(H,X,EPS)

CALCULATES BESSKL FUNCTIJUN UF FIRST KInD OF ORDER N USING ARGUMENT
X YO0 A PRECISIOnN TULEKENCE UF EPS

REAL NUMER

FACSA*40/ (2. 0% %NFAC(N))
BESEFATEAC

XSU=x*x

TWN=2*N

ISn=(+1)

Iil=u

NUMER=1

ann

anna

r 1Nf+

ER=NUMER*XSQ
OMi=peEnUd* INT* (TWi+1i
FRK=BESFK+ISNXFACENY
G ?(b;&FK BOLD) .GE.E
r

==
Tl
JZ}U
QC
om
<
[w}
=
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APPENDIX E

COMPUTER SOLUTIONS FOR A SOLAR ORBIT
(APPROXIMATE AND NON-LINEAR REGRESSION)
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APPENDIX E

COMPUTER SOLUTIONS FOR A SOLAR ORBIT
(APPROXIMATE AND NON-LINEAR REGRESSION)

*SUSﬁUUT§NE SILARI(IYRDAY,SOLTIM, sCOUR, ASUN,YSUN,2ZSUN,SUNLAT,SUNLOGN
» SUNHGY .

COMPUTE dSUN POSI'TIUN VECYTUR ACCURNING Tu EMPIKICAL FORMULAE

ERLC A. ohITH

DEPARTMENT OF ATHMOSPHERIC SCIENCE

COLOKAVD STATE UATVERSITY/FUUTHILLS CAMPUS
FORT CuLLINS, CULORADO 30523

TEL 303-4%1-8533

INPUT PARAMETERS

IYRDAY = YEAR ( YYDOD IN JULIAN DAY )
SOLTIM = TIME ( HOU&AS IN GMI )
ICOUK = U FuUR THERRESTRIAL CUORDINATES
= 1 FUR CELESIIAL COORDINATES ( nUT AVAILABLE )

OULPUT PAKRAMETERS

XSUN = X COMPONENT UF SUN PUSLTIUN VECTOR ( KM )
YSUN = Y CUMPONENT OF SUN POSITIUN VECIOR ( Kh )
ZSUN = Z COFPUNENT ur SUN PUSITIUN VECTUR ( KM )

SUNLAT = SUN LAT1TUUE ( DEGKEES )

SUNLUN = SUW LUNGITUub ( DEGREES ) -~

SUWNHGT = SUN HEIGHT ( K )

DALA P1/3.1415926%/

DALA AVEnG1/149600000.0/

RDPDG=PI/180.0

IYEARSINTDIV(IYRDAY,1000)

IDAY=MUU (IYRODAY,1000)

TOT=NUMYR(IYEAR)

DAY=IDAY~-1+80LTIM/24.0

THEL1=2*pP1¥DAY/TOT

THET2=2%1HET1

THET3=3%1HET1

C1=CUS(THET]1)

S1=SIN(THET1)

C2=CUS(THET2)

S2=SIN(THET2)

C3=CusS(TrET3)

S$3=51w(InET3)

SUNDEC=0.006918-0_39%912%C1+0,070257%51=0.006758%C2+0.000907%52
~0.UC20Y7*C340,00146%53

DISCUR=1.00011+0.034221%C140.00126%S1+0.0U00719%¥C2+0,000077%5%

SUNLAT=SUNDEC/RDPDG

SUNLON==19% (SOLTIM=12.0)

SUNHGT=AVEHGT/SQRT (DISCOR)

XUAT=RDPUGXSUNLAT

XLONSKDPUG*SUNLON

XSUM=SUNHRGT*COS{XLAT)*CUS (XLON)
YSUN=SUNHGT*COS(XLAT ) %311 (XLON)
ZSUNS=SUNHGT*SIN(XLAT)

REYUKK
END
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SUBRUUTIRKE SUuARZ(IYRuAY,SULTLM,ICUUR,XSUN,YSUN,ZSUH,SUNLAI.SUNLUN
*,SUNKHGT)

CitPUTe SUN PUSITIU. VECTNR ACCURDIVG 10 WOUN-LIWEAR REGKESSIUN
ERIC A. SWIIH

DEPARTMENT OF Ar1UbvrtK1C SCILNCE )
COLURALL STATE UNIVE- TY/FOU ‘ HILLS CAMPUS
FORT CULLINS, CULURAuH BUS23

TEL 303-4%1-%533

MODlFICAT]UNVUF n ROUTINE SUPPLIED BY THe NATIUWAL EANVIRONMENTAL
SATELL1Te SERVICE ( wkESS )

INPUY PARAMETERS

TYRDAY = YEAR ( YYbisD IN JULTAN DAY )

SOLTI™ = TIME ( HUOU=S IN Gul

ICUDK = U FOR TERKxSTHIAL COURDINATES
= )} FOR CELESVTIAL COURVDLINATES

QUTPUT PARAMETEKS

XSUN = X COMPONENT OF SUN POSITION VEGCTOR (

YSUN = Y COwPONENT OF SUN PUSITION VECIGR ( KM )

28UN = Z COMPONENT OF SUN POSTTIGN VECTOR )

SUNLAT = SO LATITUDE ( DEGREES )

SUNLON = SUR LONGITUDE ( DEGREES )

SUNHGT = SUK HEIGHT ( KM )

REAL LP

ORBILAL CONSTANTS

PI = VALUE DF I

SULYR = NUMBER DF Da¥S IN SOLAR YEAR ( DAYS )

SIbYr = NUMBER NF DAYS Iu SIDEREAL YEAK ( DAYS )

IRIDAY = YYDDD #HEN CELESTIAL COOK SYS CUINCIDES WITH EAKTH COUR SYS
1.E. TRANSIT UF FIRST POINT DF AIKES WITA GREENWLCH MEKIDIAN

IRFHMS = hHAMSS WHEN CELESTIAL CONR SYS COINCIDES WITH £ARTH COOK_SYS
[.7, TRANSIT UF FIRST POINT OF AIRES WITH GREENWICH MERIDIAN

CHRANG = CELESTIAL HOUR ANGLE ~ 2ERQ AT TRANSIT TIME ( DEGREES )

PREVEY = PEATOD OF [HE PKECESIOW OF THE VERNAL EQUINOX (TYEAKS )

OsCLLIP = URLINUITY UF THE ECLIPTIC ( DEG )

(LETURY,icPrR¥S) = EPUCH TI1ME BASE FOR KEGress1on

(Cu=Cy,bi-£7) = REGRESSION COwSTANTS

DALA P1/3.14159265358979/

DALA SDLYR,5I0YR/365,24219579,366.24219679/

DATA IRYODAY, IRFHMS/TH0 61,1716607

DATA CHEANG/0O.0/

DATA PREVEQ/25761.0/

DALA OpCLLP/23.457

DATA IEYDAY,IEPHAS/58261,0/

DALA C1/0.1766497849094000E3/

DATA C27U.9656473449550007E0/

DATA C3/0.2269569821259403E=-12/

DALA Ca/0.2544366103435000E3/

DALA €5/0.9856002627002031E07

DATA Co/u.117437403%889979E=-12/

DALA C7/9.2279217640504500E3/

DATA C8/U.b295305653818060E-1/

DATA C9/0.1557866202662415E=11/

DATA £1/0.335026000000000GE=17

DATA E2/0.2344478059422770E2/

DATA E3/0.35645296220248R9E=6/

DAIA ra/u.255433333353333336-2/

DALA E5/U.15338RBEERBrbsEEE=3/

DALA EB/0.149600000UNUBO000OEY/

DAYA £7/0.7274120006000000E=2/
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DATA 1uwJys/70/
INLTlallae COMSTANTS
}F}In}r.ﬂh .0)GU TO 1

RDPDL=PI/180,.0

TWUPLI=2.0%P1

SOuSlD:SLDYR/SDLYR

EHmS=FTInE (LEPHMS)

RHiaS=F LImb (IRFrMS)

CHA=ZRDPUG*CHRANG

ROTAT1ON KATE OF THe VERNAL EQUINDX IN TERMS UF S1IDEREAL TIME
VEG=TwUPL*SOLSIN/ (PREVEG*SOLYR¥1440,0)

TeRRESTRLIAL ROTATION KATE IN TERMS UF SIDEREAL TIME
ROT=TWOPL*SOLSIV/1440,.0

CALCULATE TIME DIFFeRENCE IN DAYS

1 DIFTIM=TLIMDIF(IEYDAY,EHMS,I1YRDAY,SOLTIM)
D=DIFTLlM/1440.0

nnn

N OO0 NNnnN

C

g CALCULATE REGRES31ON
DSu=u*D
LP=C1+CZ*D+C3%DSAQ
ALP=Ca+ChH¥D=~Cohb*DSQ
OMEGA=CT=CBXD+C9*DSQ
LP=RDPDG*AMOD(LP, 360,0)
ALP=KLPDG*ARDD (ALP, 360.0)
OMEGA=KDOPDGXAMOD (O MtGA,JGU 0)

XSUL=LP+E1*SIN(ALP )
XEPS=huPLG*¥(E2= Es*n+b4*c06(UMLGA)+ES*CUS(2*LP))

c RSUN=E6X10,0¥%(=£T7+#CUS(ALP))

g COMPUTE A CELRSTIAL POSITIuN VECTOR
XSUNSKSUN*CUS (XSOL)
YSUNSHSUNXSIN(X30L)*COS(XEFS)
ZSUN=RHUNX*SLA(ASOL)*S51Rk (XEFPS)

¢ IF(ICOUR.NELD)IGD TO 2

E DETEKMINE TRANSFNORMATION MATRIX FOR ROTATION TO TERRESTRIAL COORDINATES
DIFTIN=TINDIF(IRYDAY,RHMS,IYRDAY,SOLTIM)
RAS=CHA+DIFLTIMX(RD[-VEQ)

RAS=ANOD(RAS, TWOPI)
SRA=SIN(RAS)
CRA=CUS (RAS)
XS=XSUN

YS=YSUN

g YA VAT

g ROTATION TO YERRESTw1AL PUOINTING VECTOR
XSUN=+CRAXXS+SRA*YS )
YSUN==SRA¥XS3+CRAXYS

E ZSUNZ+ZS

g CONVERT 'O SPHERICAL COORDINATES

2 SSEXSUNKXSUN+YSUNXYSUN

SUNLALV=ATANZ(ZSUW ,5QRL(SS)) OPDG
SUHLUN:ATANZ(YSUH,XSUN)/RD
SURAGT=SWRT (SS+ZSUN®LSUN)

RETURN

ENV



153

APPENDIX F

LIBRARY ROUTINES FOR ORBITAL SOFTWARE



154

APPENDIX F

LIBRARY ROUTINES FOR ORBIT SOFTWARE

FUNCTION FLALUM)

PACKED IwPEGER ( ALGH DLD MM 35 ) LATLTUDE-LUNGITUDE TO FLUATING POINT
INPUT PARA“ETERS

M = PACKED I3TE6eErR ( SIGN DDD M+ SS ) LATITUDE-LONGITUDE

MJLLL0)GH TU 1

[elelgisinlele]

0000))+FLOAT(MUD(INTDIV(N,100),100))/60,0+FL

C

END

FUNCTIUN FTIME(M)

PACKED INTEGER ( SIGW Hh MM S§S ) TIME TO FLOAYTIMNG PUINT
INPUL PARAMETERS

¥ = PACKED INTEGER ( SIGN HH MM 85 ) TIME

%F(..LT.U)GO ™0 1
i

ONOOONO

v
G0 TO 2

1 N==p
==1.0

(N,IOGOU))+rb0AT(MUJ(INTDIV(N 100),100))/60.0+FL

NCTIUN GCIKRC(XLAT1,XLUNL,XLAT2,XLON2)
GREAT CIKRCLE ARC DISTANCE 1N KILOMETERS
INPUL PARAMETERS

XLAT1 LATITUDE OF FIRST POInT ( DEGREES )

XLUNL LUNGITUDE OF FIHST PUINT ( DEGREES )
XLAT2 LA1IFUDL OF SECOND POINT ( DEGKEES )
XLUNZ E OF SECOND PUINT ( DbGRhBS )

DATA PLl/3
DATA XKiir
DALA xmiin/

Hitumn

ONONNNNNN

-\ C
'NU

51
1
1
0
XLAT1,XLAT2))

YLAI=XLAT
UN XLOwSk

C"J"J‘"‘G‘NC‘H
-2
|-n—<
uua

(CP AT N r

L
C
F
L RDBUC*XLAF

L TA-RUruG*XLAT

LUNSRDPDG*YL

GC1lkCs= XKMPDG*ACUS(SIN(YLATI)*blN(YLAT2)+CDS(YLA11)*COS(YLAT2)*
* CUS(YLOUN))/RDPDG

SLIUKN

FUNCIIUN GEULAT(INIE,XLAT)
GEUDETLIC=GENCENTRIC LAT1TUDE CUNVERSION

S
PY
IKC LT XM Ti
2

G 0o 0o et ) 0 D 2

XK
X
1
(
R
A
u

an
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livedl PARKAWETERS

IDIR = 1 FOR GEODELIC Tu GEQCEHTRIC
= 2 FUR GEUCEWTRIC 10 GENDETIC

ALAT = LATLTUDE ( DRGREES )

DALA PL1/73.1415926%/

DALA Rb,vP/0378_3%3,6356,912/
IFQIoIR. LT OR.TOIR.GT . 2)ReETURN
XOPOGEP1/1bU.

‘= (Ru=nP)/Re

FACS(1.0=F)*¥)

YLALT=SRDPUGHALAT

GU Tu(1,2),IvlR
GEULAT=ALANCTAN(YLAT)XFAC) /ROPDG
RETURN
GEULAT=ATAN(TAN(YLAT)/FAC)/KDPDG
SFLUNN

FUBLFIUN ILALUOCX)

FLUAT1NG POINT LATITUVE-LONGITUDE TO PACKED INTEGER { SIGN DOD KM SS )
INPUT PARAXETERS

X = FLUALTING POLNT LATITUDE OR LOWNGLIJDE

%ziX.LT.U.OJGU TO 1

I=1
GO Tu 2
=-1
J=30uu,UxY+0,
ILALU= IUUUU¥INruIV(J 3600)+100%MOV(INTDIV(J,5V),60)+M0OD(J,60)
ILALU=1*1LAtd)
RELTURN
END
FUNCTION INTDIV(IL,Jd)

INFEGER UIVIDE WIPHUUT ROUNDOFF PROBLEMS
INPUT PARAMETERS

NUMERATOR
VENUMINATOR

b

[N

LY.O)IR==}

S5(I)/X+CUON
rToIV

e e
Pl el ™)
')'IJ\-’

Hfz

T et X KT
czmzzuane

TIOH IROUND(CX)

ROUNDS A FLUATING PULINT NUMBER

INPUT PARAMETERS

= FLUATING POINT WUMBER TO CONVERT

’URN
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RE JUR
wid
FunwCIlluiv 11T (X)
FLUATIWG POINT TIWE TU PACKED 1WLEGER ( SIGN HH MM 88 )
INPUL PAKAMETERS
X = FLUALING RUINT TIWE
IF(X.LI.0.0)G0) 7TJd 1
Y=A
1=1
GO TO 2
Y==X
1=~1
J=3600,0%Y+4,.5
ITLRES lOvuﬂ*[HlUlV(d'3600)+10J*MUD(INFJ1V(J 6U),60)+MOD(I,60)
ITime=1*10T1H
RETUKN
EnD
SUBROULLINE JULDAY(IYKDAY,ITIT)
CONVERYL JULIAN DAY TO ALPHA ArADING

INPUY PARAMETERS

IYRDAY = YEAR=DAY ( YYDUD )
ITIT = 20 CHARACTER T1TLE
DIMENSLUN IYIT(1),mONTHS(2,12) .
DATA MUNLHS/2HJIA, 2HN , 2HFE, 268 ,2dMA, 2HR ,2HAP,2HR ,2HMA,2HY ,2HJU
.ZnN_,ZHdu 2HL ,2HAU,2HG ,2BSc,2HP ,2HUC, 2HT ,zhuu PARN' ﬁHuh 2HC /
IDATE=MDCAN (2, IY=DAY)
IY=IntiDIVELIYROAY,1000)
JOAY=MUD(IYKDAY,1900)
IM=MUD(LNTIDL1V(IDATE,100), 100)
10=MOD(IDLATE,100)
ENCDUL((O,lU',ITIT)MDVTHS(I 1IM) , MONTHS(2,IM),ID,IY,JDAY
FORMAT(282,12,4H4, 19,12,1#H(,I3, QH) )
RESURN
Ni

%UNCTION MDCIN(INIR,1DATE)

CONVERSIGN BETWESN YY#MDD ( YEAR=MONTH=DAY ) AND YYDDD ( YEAR-JULIAN DAY )
INPUL PARAMETERS )

IDIR 1 FOR YYMMDD TU YYDDD

2 Fur YYODO Tu YiMMDD
IDATE = VAT

o
—
=
b

[F e

MENSION WUM(12)
DATA wuM/31,59,90,120,151,181,212, 243,273,304,334,305/
1F(IvIf.LT.1.0R.IDIRSGT 25 RETORN
GU Tu(i,2),1DIR
IY=INTOLIV(IVASLE, 10U0OU)
IM=MUD(INTDIV(LIDATE,100),100)
ID=MuB(10ATEH,100)
IF(lid.Ll.1)IM=1
IF(IM.GL.12)IM=12
LEAP=NUD(IY, 4)
1TUT=0
IF((IM-I).Nb.O)I”UT:NUM(IM-l)
IF(LEAP  EQ 0. AND JIM . GT.2YITOT=ITAT+1
ITJu=11TUT+LL
MDCUN=10U0*1IY+IJD
RETURNW N
IY=1wTD1V(ILATE,1000)
IJL=MOD(1DATE, 1000)
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—

Jir, LJ.l)lJD—
Ldb. [} sAX)[JU-MAA

1=,

tiwel )NUAY-NUM(I)

r:.l)NUﬁY WiJM (L y=-NUM{1=1)
FerW,U AliD 1okt 2)NDAY=RDAY+]
TUL+MIAY

COTLITOTIGO EY 3

I0=LJdb=1TUT+NDAY
MDLUN-lUuUH*I!fLJUv1M+ID
GU Tu 4

ConllihuUe
MDuUn-luuuu*IY+luo*12+31
RmlURN

ERD

rUNCTlON NUMDYCIYDL,1I¥YD2)

TI®E DIFFERENCE IN DAYS ( SuCOND MINUS FLIRST )
INPUT PARAMNETERS

= FLIRST YEAR=DAY ( YYDDD )
= &:CUND YEAR=DAY ( YYDou )

Hhﬂdthacrqwrﬂqr

-
=
<
P

B

T T Q202

W =2 O RN N

Hinu
e

3 H

=~
e L 0 ot o e el (T e e e Bt

)=JdDi+l

CZHBELCOCO OO Gt b b b p bt et
W C TN T I ST T | T T
—d AT AN - RN NN - <

nuscoppnith
L= ] T
+ O
- [

[o)

<

+ <

zN

[eni V)

=

<0

X

—~r3

LD

wp

2
-
=
-

Gu) Tu
NUMDY=NUADY+JID2-JD1
NUMDY=I*nUADY .
RETURN -
[ W)

FUNCiTun NUMYR(IYEAK)

NUMBER OF DAYS IN A YEAR
INPUT PARAMETERS

IYEAR = YkAR

NUMYR=30b>
LEAP=MOD(LYEAR,4)
IF(LEAP Q. O)NUMYR=366
RhlUﬁw .

EN
FUNLIIUN TIMDLIF(IYD1,TIMEL,IYD2,TIME2)

=z
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TIme UIFFRRENCE [ MINuTES ( SECUND HINUS FIRSY )
INPUY PAREACTERS

1YD1 = FLRST YEAR=DAY (. X!Duu )

Timel = ¢ LRST Tlwk 1 HOUK

1YD2 = S=COND. YEar=LAY ( men>)

TImke = SECOND TIAr L HUURS
TIFDLIFZ1440.0%VUADY(LYD1,1502)+60.0%(TaME2=-TIHE]L)
R LTURN .
END

FUNCTIUN XLATAV(XLAI1l,XLAT2)

AVERAGES ‘twWwu LATITUDE VALUES
LALLTUDE RUNS FRO%M +90,0 NUORTH TD ~%0.0 SUUTH

INPUT PARAMETERS

XLATL = v'IRST LALITUDE
XLATZ = »ECOWH LATITUUE

XLATAV=(XLAT1+ALAT2)/2.0
RElUK\

FU!CllUH ALALSA(XLAT1,X1.AT2)

SUBTRACTS TWO LATITUDE VALUES
LATITULDE RUNS FRUM +90,.0 MORTH TU -906,0 SOUTH

INPUL PARAMETERS

XLAT1 = @INUEWD
XLAT2 = SUBTRAHEND

XLATSB=XLAT1=-XLAT2
RELURN

END
FUNCLTIUN XLOWNAV(IDIR,XLU#1,XLON2)

AVERAGES TWO LOWGITUOE VALUES
LONGITUDE RUNS FROM +180.0 EAST TO -180.0 WEST

INPUYT PARAMETERS

INIR =
MERIDIANS
= 2 Tu COMPULYE AVERAGE LONGITUDE ASSUMING VECTOR EXTENDING FROM XLON1
TO XLON2 IN THE WEST TO EAST DLREL[ION
XLOM]1 = rIRSTE LONGLTUDE
XLun2 = SECOND LUNGLITUDE
IF(IDIR.LT,1.OR,IDIR.GT,2)RETURN
GO Tu(l,4),IDIR
IF(Anb(XuDNl XLN42).6T.180.0)60 TO 3
XLUNAV=(KLUN1+XLUN)J/?.
RETURN
XLUNAV=(XLU1+XLON2+300.0)/2,
IF(XLONAV.GT.180.0)X0LU V=XL)NAV =360.0
RETURN )
IF(XLON1,GY.XLOH2YG0 10 3
GO TV 2
END

FONCTLIUN XLOWNSH(XLON1, XLDN?)

SUBITRACTS TWO LOWITUDE VALUES
LONGLTUDE RUNS FROM 4180.0 EAST 10 =180.0 W#EST

INPUL PARAMETERS

1 10 COWPUTE AVERAGE LONGLTUDE ASSUMING SHORTEST VECTUR BETWEEN TWO



annn

Xthunt
[REIPA

e

X
X
IE(
RETURN
IfF(

X

N

RELURWK

ALUnSre=Xtuliass-360.0

RELURN
END

minUeND
SUBTRAHR I

WHSBEXLUNI=~XLONZ
C(ABS (XLUNSH) .Gl 10u,0)60 TU 1

XLOuSs.6T.0.0)6GU TO
UNSOZALUNSS+300.U
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APPENDIX G

COMPUTER ROUTINE FOR DETERMINING THE INCLINATION
REQUIRED FOR A SUN-SYNCHRONOUS ORBIT
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APPENDIX G

COMPUTER ROUTINE FOR DETERMINING THE INCLINATION REQUIRED
FOR A SUN~SYNCHRONOUS ORBIT

PRUGKAM SUNSY «Cn
MEAL he,mw¥(,Jd2,LRE
bhala rl/S 141:9163/
DaTA hn/bdTR, 2147
UATE Rt /U, 074305/4/
DATA D2/1082,28k~0/
LALTA k/07
DATA KU~ ,PINIT leI/q Yo, 10,0/
PATA NAX,CRIT/500,1.08=57
wR11L(0,100)

100 FUR#AT(*1 PERIUD HELGHT ANCLINATION%,//)
TwGpPl=23p]
kDPLG=P] /1800
FXP=2.0/3,.0
LHS=3600,0/3659.2421948179
PePINIT=PINT
LU 3 I=1,huM

A= (Kk*k/rﬂUPl)'*LXP
H=kk*pa=KE
MMC=300.0/7P%1440
SP=AR(1,0-t%%2)
h=0
XInC1=90
XINC2=21480
1 WEiv+ 1
IF(N.GT.MAXIGD TQ 2
AINC=(XINCL+X1INC2)/
KAZHRS (XINC, 2,50,
_C uU Tw 2

1U,4,2X,F1b.06)
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! N KHS(XINC,J2,SP,MMC,E)

/O 017453293/

CUSCXI)/SP*%2 ) xmuC*(1.0+(1, 5*0?*50RI(1 O=EX%2)/5P*%%2)
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